69 resultados para Cellular dehydration
Resumo:
Cardiovascular disease is one of the leading causes of death worldwide, and evidence indicates a correlation between the inflammatory process and cardiac dysfunction. Selective inhibitors of cyclooxygenase-2 (COX-2) enzyme are not recommended for long-term use because of potentially severe side effects to the heart. Considering this and the frequent prescribing of commercial celecoxib, the present study analyzed cellular and molecular effects of 1 and 10 µM celecoxib in a cell culture model. After a 24-h incubation, celecoxib reduced cell viability in a dose-dependent manner as also demonstrated in MTT assays. Furthermore, reverse transcription-polymerase chain reaction analysis showed that the drug modulated the expression level of genes related to death pathways, and Western blot analyses demonstrated a modulatory effect of the drug on COX-2 protein levels in cardiac cells. In addition, the results demonstrated a downregulation of prostaglandin E2 production by the cardiac cells incubated with celecoxib, in a dose-specific manner. These results are consistent with the decrease in cell viability and the presence of necrotic processes shown by Fourier transform infrared analysis, suggesting a direct correlation of prostanoids in cellular homeostasis and survival.
Resumo:
Recurrent aphthous ulcer (RAU) is an inflammatory condition of the oral mucosa characterized by painful, well-circumscribed, single or multiple round or ovoid ulcerations. The exact etiologic factor(s) of these ulcerations are not yet understood. The objective of this study was to evaluate inflammatory processes and free radical metabolism of 25 patients with RAUs compared to 25 healthy controls. The levels of malondialdehyde (MDA) and glutathione (GSH) were determined by high-performance liquid chromatography. Tumor necrosis factor-alpha (TNF-α), interleukin-2 (IL-2), IL-10, and IL-12 were determined by ELISA. Nitric oxide (NO), myeloperoxidase (MPO), total antioxidant status (TAS), and total oxidant status (TOS) levels were measured spectroscopically in serum. The levels of MDA, GSH, TNF-α, IL-2, IL-12, MPO, and TOS, and oxidative stress index (OSI) were higher, and the levels of NO, IL-10, and TAS were lower in patients with RAU than in controls. Statistical analysis showed that GSH, TNF-α, IL-2, IL-10, and OSI differed significantly in patients with RAU compared to controls. These parameters have important roles in oxidant/antioxidant defense.
Resumo:
Osmotic dehydration of cherry tomato as influenced by osmotic agent (sodium chloride and a mixed sodium chloride and sucrose solutions) and solution concentration (10 and 25% w/w) at room temperature (25°C) was studied. Kinetics of water loss and solids uptake were determined by a two parameter model, based on Fick's second law and applied to spherical geometry. The water apparent diffusivity coefficients obtained ranged from 2.17x10-10 to 11.69x10-10 m²/s.
Resumo:
The aim of this work was to evaluate the osmotic dehydration of sweet potato (Ipomoea batatas) using hypertonic sucrose solutions, with or without NaCl, at three different concentrations, at 40 °C. Highest water losses were obtained when the mixture of sucrose and NaCl was used. The addition of NaCl to osmotic solutions increases the driving force of the process and it is verified that the osmotic dehydration process is mainly influenced by changes in NaCl concentration, but the positive effect of the salt-sucrose interaction on soluble solids also determined the decrease of solid gain when solutes were at maximum concentrations. Mass transfer kinetics were modeled according to Peleg, Fick and Page's equations, which presented good fittings of the experimental data. Peleg's equation and Page's model presented the best fitting and showed excellent predictive capacity for water loss and salt gain data. The effective diffusivity determined using Fick's Second Law applied to slice geometry was found to be in the range from 3.82 x 10-11 to 7.46 x 10-11 m²/s for water loss and from 1.18 x 10-10 to 3.38 x 10-11 m²/s for solid gain.
Resumo:
This paper evaluated the influence of temperature and concentration of the sucrose syrup on the pre-osmotic dehydration of peaches. Physical (colour and texture) and chemical variables (soluble solid content; total sugar, reducing and non-reducing sugar contents; and titratable acidity) were investigated, as well as the osmotic dehydration parameters (loss of weight and water; solids incorporation). An experimental central composite design was employed varying the temperature (from 30 to 50 ºC) and concentration (from 45 to 65 ºBrix) and maintaining the syrup to fruit ratio (4:1), process time (4 hours), and format (slices). The degree of acceptance was used in the sensory analysis evaluating the following characteristics: appearance, taste, texture, colour, and overall quality using a hedonic scale. The results were modelled using the Statistica program (v. 6.0) and the Response Surface Methodology. The mathematical models of the following dimensionless variations yielded significant (p < 0.05) and predictive results: soluble solids content, total and non-reducing sugar contents, titratable acidity, colour parameter L*, and water loss. The models of the attributes colour and appearance yielded significant (p < 0.10) but not predictive results. Temperature was the prevalent effect in the models. The process conditions in the range from 50 to 54.1 ºC and from 45 to 65 ºBrix led to greater water losses and better sensory performances.
Resumo:
The objective of this work was to determine and model the infrared dehydration curves of apple slices - Fuji and Gala varieties. The slices were dehydrated until constant mass, in a prototype dryer with infrared heating source. The applied temperatures ranged from 50 to 100 °C. Due to the physical characteristics of the product, the dehydration curve was divided in two periods, constant and falling, separated by the critical moisture content. A linear model was used to describe the constant dehydration period. Empirical models traditionally used to model the drying behavior of agricultural products were fitted to the experimental data of the falling dehydration period. Critical moisture contents of 2.811 and 3.103 kgw kgs-1 were observed for the Fuji and Gala varieties, respectively. Based on the results, it was concluded that the constant dehydration rates presented a direct relationship with the temperature; thus, it was possible to fit a model that describes the moisture content variation in function of time and temperature. Among the tested models, which describe the falling dehydration period, the model proposed by Midilli presented the best fit for all studied conditions.
Resumo:
The objective of this work was to study the effect of blanching and the influence of temperature, solution concentration, and the initial fruit:solution ratio on the osmotic dehydration of star-fruit slices. For blanching, different concentrations of citric and ascorbic acids were studied. The samples immersed in 0.75% citric acid presented little variation in color in relation to the fresh star-fruit. Osmotic dehydration was carried out in an incubator with orbital shaking, controlled temperature, and constant shaking at 120 rpm. The influence of process variables was studied in trials defined by a complete 23 central composite design. In general, water loss and solids gain were positively influenced by temperature and by solution concentration. Nevertheless, lower temperatures reduced water loss throughout the osmotic dehydration process. An increase in the amount of dehydrating solution (initial fruit:solution ratio) slightly influenced the evaluated responses. The process carried out at 50 ºC with a solution concentration of 50% resulted in a product with lower solids gain and greater water loss. Under these conditions, blanching minimized the effect of the osmotic treatment on star-fruit browning, and therefore the blanched fruits showed little variation in color in relation to the fresh fruit.
Resumo:
In this study, the effects of hot-air drying conditions on color, water holding capacity, and total phenolic content of dried apple were investigated using artificial neural network as an intelligent modeling system. After that, a genetic algorithm was used to optimize the drying conditions. Apples were dried at different temperatures (40, 60, and 80 °C) and at three air flow-rates (0.5, 1, and 1.5 m/s). Applying the leave-one-out cross validation methodology, simulated and experimental data were in good agreement presenting an error < 2.4 %. Quality index optimal values were found at 62.9 °C and 1.0 m/s using genetic algorithm.
Resumo:
Red pepper is rich in vitamin C and other phytochemicals and can be consumed as a dehydrated product. The evaluation of the best drying conditions can ensure a better quality product. This study aimed to investigate the effect of air temperature (55, 65, and 75 ºC) on drying kinetics of red peppers and on vitamin C, total phenolic content, and color of dried pepper as compared to the fresh product. Dehydration was carried out in a forced convection oven. Drying kinetics was determined by periodic weighting until constant weight. The moisture content of the fresh pepper was approximately 86%. The drying curves were fitted to three different models available in the literature. The Page model showed the best fit for this process. Analysis of variance revealed that the air drying temperature significantly influenced (p < 0.05) the quality parameters (vitamin C content, total phenolic content, and color) of the dried pepper as compared to the fresh pepper. After drying, the vitamin C retention increased with reduced air-drying temperature. In general, products dried at lower temperatures exhibited better quality due to reduced losses of bioactive compounds.