142 resultados para oxide glasses
Resumo:
Glasses with low silica content are very susceptible to suffer pronounced degradation when exposed to room atmosphere during short times. In this work the results of the degradation of the surface of a metasilicate glass with composition 2Na2O.1CaO.3SiO2 are presented. Optical and scanning electron microscopy observations, X-ray diffraction, infrared and Raman microprobe spectroscopic measurements of the modified surface of this glass show strong evidences that it is formed essentially by a crystalline carbonate layer.
Resumo:
Their extended transparency in the IR makes them attractive for use as optical fibers for CO laser power delivery and optical amplification. This paper firstly describes the spectacular stabilizing effect of MgF2 on the binary system InF3-BaF2. The investigation of the InF3-BaF2-MgF2 system led to samples up to 5mm in thickness. Further optimization of this system was achieved by incorporation of limited amounts of other fluorides and resulted in increased resistence to devitrification. The second approach of this work was concerned to the investigation of the pseudo-ternary system InF3-GdF3-GaF3 at constant concentrations of ZnF2-SrF2-BaF2-NaF. Several compositions were studied in this system. The samples presented a better thermal stability when compared to other families of fluoride glasses. Therefore, these glasses seem to be very promising for the fabrication of special optical fibers. Thermal data are reported.
Resumo:
In this paper, glasses in the systems In-Ba-Mg and In-Ba-Zn-Sr-Mg were water leachead at 80ºC showing surface degradation after 72 hours of leaching. The extent of such degradation is determined by the solubility and the concentration of the elemental fluorides that constitute the glasses. The formation of a layer of crystallized phases on the surface of the samples was observed. Small weight losses were registered and the absence of water on the glass matrix after the attack suggested that the use of MgF2 in the systems studied can lead to better results against moisture corrosion when compared to other fluoride glasses such as the fluorozirconates.
Resumo:
Fabrication of new optical devices based upon the incorporation of rare earth ions via sol-gel methods depends on elimination of dopant ion clusters and residual hydroxyl groups from the final material. The optical absorption and/or luminescence properties of luminescent rare earth ions are influenced by the local bonding environment and the distribution of the rare-earth dopants in the matrix. Typically, dopants are incorporated into gel via dissolution of soluble species into the initial precursor sol. In this work, Eu3+ is used as optical probe, to assess changes in the local environment. Results of emission, excitation, fluorescence line narrowing and lifetimes studies of Eu3+-doped gels derived from Si(OCH3)4 and fluorinated/chelate Eu3+ precursors are presented. The precursors used in the sol-gel synthesis were: tris (6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5-octanedionate) Eu(III), Eu (III) trifluoromethanesulfonate, Eu(III) acetylacetonate hydrate, Eu (III) trifluoroacetate trihidrate, tris (2,2,6,6-tetramethyl-3,5- heptanedionate) Eu(III) and Eu(NO3)3.6H2O. The results were interpreted in terms of the evolution of the Eu3+ fluorescence in systems varying from solution to the gels densified to 800ºC. The lifetimes studies indicate that the fluorinated precursors are effective at reducing the water content in densified gels.
Resumo:
In this work it is carried out a review on structural parameters related to the evaluation of pore connectivity of nanostructures. The work describes parameters and methods of evaluation of geometric parameters. The concepts of connectivity are applied to silica gels and glasses obtained from sol-gel process. The study of pores connectivity was carried out using a combination of geometric modeling and experimental evaluation of specific surface area and pore volume. The permeability of the pore structure is evaluated and a permeability geometric factor, Pg, is proposed.
Resumo:
The reaction of 1,2-dihydroxy-benzene (pyrocatechol) (C6H6O2) with iron oxide (Fe2O3) and sodium thiosulfate (Na2S2O3) in aqueous medium (pH 7) was investigated. Pyrocatechol suffers autoxidation and coordinates with Fe3+ in solution. The presence of S2O3(2-) in solution was fundamental to generate and stabilize the pyrocatechol oxidation products as o-semiquinones. This compound was isolated and its structure characterized using FT-IR, EPR and UV-Vis Spectroscopy as [CTA][Fe(SQ)2(Cat)]. A thermal mass loss mechanism was proposed based on Thermogravimetric Analysis (TG) to support the structural characterization.
Resumo:
The electrochemical study of glass like tungsten oxide derivatives requires the construction of special electrodes due to the fact that these glasses are not conductive. Electrodes modified with WO3 change their color when submitted to some potential perturbation. The color change of the electrochromic materials was observed in situ by coupling an electrochemical cell to a stereomicroscope. The constructed cell is versatile and may represent a great contribution to the electrochemical studies of materials, especially in the systems where it is interest to observe the working electrode surface during the electrochemical experiment.
Resumo:
Water-in-crude oil emulsions are formed during petroleum production and asphaltenes play an important role in their stabilization. Demulsifiers are added to destabilize such emulsions,however the demulsification mechanism is not completely known. In this paper, the performances of commercial poly(ethylene oxide-b-propylene oxide) demulsifiers were studied using synthetic water-in-oil emulsions and model-systems (asphaltenes in organic solvent). No change in the asphaltene aggregate size induced by the demulsifier was observed. The demulsification performance decreased as the asphaltene aggregate size increased, so it can be suggested that the demulsification mechanism is correlated to the voids between the aggregates adsorbed on the water droplets surface.
Resumo:
We describe the synthesis of 12 new ethyl and methyl quinoxaline-7-carboxylate 1,4-di-N-oxide derivatives on solid supports with room temperature and microwave-assisted solvent-free procedures. Results show that solid supports have good catalytic activity in the formation of quinoxaline 1,4-di-N-oxide derivatives. We found that florisil and montmorillonite KSF and K10 could be used as new, easily available, inexpensive alternatives of catalysts. Additionally, room temperature and microwave-irradiation solvent-free synthesis was more efficient than a conventional procedure (Beirut reaction), reducing reaction time and increasing yield.
Resumo:
Indium tin oxide nanoparticles were synthesized in two different sizes by a nonhydrolytic sol-gel method. These powders were then transformed into ITO via an intermediate metastable state at between 300 and 600 ºC. The presence of characteristic O-In-O and O-Sn-O bands at 480 and 670 cm-1 confirmed the formation of ITO. The X-ray diffraction patterns indicated the preferential formation of metastable hexagonal phase ITO (corundum type) as opposed to cubic phase ITO when the reflux time was less than 3 h and the heat treatment temperature was below 600 ºC. Particle morphology and crystal size were examined by scanning electron microscopy.
Resumo:
ABSTRACT We report on the basic properties of zeolite NaY and potassium supported on NaY (K/NaY) assessed by pyrrole-TPD and MBOH transformation. Pyrrole-TPD revealed that impregnation of zeolite NaY with potassium promoted additional adsorption sites for pyrrole compared to parent zeolite. For zeolite with various potassium loadings, pyrrole adsorbed on K/NaY decreased with increased potassium loading. Reduction in pyrrole adsorption could be due to potassium hindering intrinsic basic sites (lattice oxygen), to oxide of potassium occluding in zeolite cavities restricting access for pyrrole, or to K2O reacting with pyrrole to form nondesorbed pyrrolate anions. On MBOH transformation, potassium almost completely suppressed NaY acid sites while K/NaY basicity increased with potassium loading.
Resumo:
This study investigated the emission of N2O during the sequential aerated (60-min) and non-aerated (30-min) stages of an intermittent aeration cycle in an activated sludge wastewater treatment plant (WWTP). N2O emission occurred during both stages; however, emission was much higher during aeration. Air stripping is the major factor controlling transfer of N2O from the sewage to the atmosphere. The N2O emissions exclusively from the aeration tank represented 0.10% of the influent total nitrogen load and the per capita emission factor was almost 3 times higher than that suggested by the IPCC for inventories of N2O emission from WWTPs.
Resumo:
A simple, precise, specific, repeatable and discriminating dissolution test for primaquine (PQ) matrix tablets was developed and validated according to ICH and FDA guidelines. Two UV assaying methods were validated for determination of PQ released in 0.1 M hydrochloric acid and water media. Both methods were linear (R²>0.999), precise (R.S.D.<1.87%) and accurate (97.65-99.97%). Dissolution efficiency (69-88%) and equivalence of formulations (f2) was assessed in different media and apparatuses (basket/100 rpm and paddle/50 rpm) tested. Discriminating condition was 900 mL aqueous medium, basket at 100 rpm and sampling times at 1, 4 and 8 h. Repeatability (R.S.D.<2.71%) and intermediate precision (R.S.D.<2.06%) of dissolution method were satisfactory.
Resumo:
The equilibrium geometries of α,α-ditert-butyl-4H-cyclopenta[2,1-b,3;4-b']dithiophene (DBDT) and α,α-ditert-butyl-4H-cyclopenta[2,1-b,3;4-b']dithiophene S-oxide (DBDTO) were studied at the DFT level of theory with a standard 6-311G* basis set. The molecular structures of the DBDT series were more planar than the corresponding DBDTO series, as revealed by dihedral angles. The UV-visible absorption calculated at TD-DFT/6-311G* showed two absorption peaks for all the molecules except C=S and C=O bridged molecules. In DBDTOs, C=S and C=O bridged molecules showed three and four absorption peaks, respectively. The DBDTOs had lower band gaps and longer wavelengths compared to the corresponding DBDTs.
Resumo:
Synthesis, spectral identification, and magnetic properties of three complexes of Ni(II), Cu(II), and Zn(II) are described. All three compounds have the general formula [M(L)2(H2O)2], where L = deprotonated phenol in the Schiff base 2-((z)-(3-methylpyridin-2-yleimino)methyl)phenol. The three complexes were synthesized in a one-step synthesis and characterized by elemental analysis, Fourier transform infrared spectroscopy, electronic spectra, X-ray diffraction (XRD), and room temperature magnetic moments. The Cu(II) and Ni(II) complexes exhibited room temperature magnetic moments of 1.85 B.M. per copper atom and 2.96 B.M. per nickel atom. The X-band electron spin resonance spectra of a Cu(II) sample in dimethylformamide frozen at 77 K (liquid nitrogen temperature) showed a typical ΔMS = ± 1 transition. The complexes ([M(L)2(H2O)2]) were investigated by the cyclic voltammetry technique, which provided information regarding the electrochemical mechanism of redox behavior of the compounds. Thermal decomposition of the complexes at 750 ºC resulted in the formation of metal oxide nanoparticles. XRD analyses indicated that the nanoparticles had a high degree of crystallinity. The average sizes of the nanoparticles were found to be approximately 54.3, 30.1, and 44.4 nm for NiO, CuO, and ZnO, respectively.