73 resultados para fonte de carboidrato
Resumo:
This article describes the use of a conventional CRT monitor as a high voltage power supply for capillary electrophoresis. With this monitor, a 23-kV high voltage with a ripple of 1.32% was observed. The reproducibility of the applied high voltage was evaluated by measuring the standard deviations of peak area and migration time for five consecutive injections of a test mixture containing potassium, sodium, and lithium cations at 50 mmol L-1. The errors were about 2.5% and 0.6% for peak area and migration time, respectively. The maximum current tested was about 180 mA, which covers most capillary electrophoresis applications. This system has been successfully used for several months, maintaining the desired level of performance.
Resumo:
The internet is an important tool for obtaining information. It offers vast amounts of information ranging from basic to advanced, from general to specific. Nevertheless, its quality cannot be classified or graded. Furthermore, some technical and/or specific information may not be available for free. This work primarily shows the great utility of the internet for getting suitable information in Chemistry and emphasizes open access and quality sites in Chemistry. It directs the reader towards many useful sites within some branches of Chemistry that provide powerful tools of research and study that may not be obtained easily at a library.
Resumo:
Kefir, a symbiont microorganism suspension, presents benefic effects to health. Some kefir grains were cultivated in brown sugar, allowing to isolate a substance named CSQ. This was evaluated on a biologic essay of mouse foot edema, presenting an inhibitory activity of 30+4 % against carrageenan after the stimulus. It was observed that a cultivation mean containing sucrose, and not the milky mean, lead to the production of different sugar polymeric chains of kefir. The results in vivo suggest that the CSQ exerted an anti-inflammatory activity.
Resumo:
In economic terms, biodiversity transcends the boundaries usually given to conventional industries because it is a valuable source of biological and chemical data of great use to drug discovery. Certainly, the use of natural products has been the single most successful strategy in the discovery of novel medicines, and most of the medical breakthroughs are based on natural products. Half of the top 20 best-selling drugs are natural products, and their total sales amounted to US$ 16 billions shows the importance of natural products, which is evidenced by the new chemical entities (NCE) approved by regulatory authorities around the world in the past decade. Recently, the approval of the alkaloid galanthamine as a medicine to treat Alzheimer's disease shows that natural compounds from plants will continue to reach the market. The huge biological diversity of the Brazilian biomes, by its ability to generate new knowledge and technological innovation can be a fantastic alternative as raw material for drug discovery.
Resumo:
Though sharing only a short part on the natural products timeline, the studies on marine products has already handed in four new drugs to the clinical arsenal and brought up a long and promising list of unique molecules to pre-clinical and clinical trials. Thus, as the available analytical resources improve and the interest of large pharmaceutical companies arises, medical use of marine products has definitely become a reality.
Resumo:
Cardiovascular diseases are responsible for the largest number of deaths among humans worldwide, including heart attacks, strokes, and thrombosis. The treatment of thrombosis is generally through the administration of anticoagulant and/or antiplatelet drugs, which have some clinical limitations. Plants synthesize a wide variety of bioactive metabolites in response to different stimuli. This review focuses on a number of molecules of vegetal origin belonging to different chemical classes, with significant anticoagulant and antiplatelet effects. Their promising antithrombotic profile confirms the potential of natural products as a source of lead molecules for drug development in the prevention and treatment of thrombosis.
Resumo:
This work presents an optimized integrated experiment for isolation of clove bud essential oil, rich in eugenol, and subsequent utilization of the solid residue for furfural synthesis. The operationally simple laboratory protocols and utilization of water as a solvent in both operations, plus the use of biomass as the starting material for preparation of versatile intermediates in organic synthesis, make the experiments attractive for undergraduate experimental organic chemistry courses in the context of green chemistry. In addition, this is the first description of the use of biomass (clove bud) in the simultaneous preparation of two chemical feedstocks, eugenol and furfural, on experimental organic chemistry courses.
Resumo:
In this work, the fatty acid quantity and composition of six freshwater microalgae and soybean grains was determined by direct transesterification and gas chromatography analysis. The results showed that all the freshwater microalgae species presented a higher quantity of fatty acid than soybean grain. Choricystis sp. (A) provides 115% more fatty acids per gram of biomass than soybean grain. With regard to the fatty acid composition, Choricystis sp. (A) showed an adequate proportion of saturated and unsaturated fatty acids, with lower quantity of polyunsaturated fatty acids and, akin to some marine microalgae, constitutes an alternative raw material for biodiesel production.
Resumo:
This paper describes the use of the open source hardware platform, denominated "Arduino", for controlling solenoid valves for solutions handling in flow analysis systems. System assessment was carried out by spectrophotometric determination of iron (II) in natural water. The sampling rate was estimated as 45 determinations per hour and the coefficient of variation was lower than 3%. Per determination, 208 µg of 1-10-phenanthroline and ascorbic acid were consumed, generating 1.3 mL of waste. "Arduino" proved a reliable microcontroller with low cost and simple interfacing, allowing USB communication for solenoid device switching in flow systems.
Resumo:
Fresh water sponge was used as a silica source for the synthesis of MCM-41 via the hydrothermal process. The silica was extracted from the sponge by washing with nitric acid and piranha solution. Synthesis of MCM-41 was performed at 100 °C for 5 days and the procedure was optimized, with modifications made to the leaching temperature of the silica and the synthesis of mesoporous material, which was characterized by XRD, FT-IR, SEM and adsorption of N2. The optimal result was achieved at a temperature of 135 °C for 3 days, showing ordered mesoporous material with a surface area of 1080 m² g-1.
Resumo:
Coal, oil, natural gas, and shale gas are biomass that is formed millions of years ago. These are non-renewable and depleting, even considering the recent discovery of new sources of oil in the presalt and new technologies for the exploitation of shale deposits. Currently, these raw materials are used as a source of energy production and are also important for the production of fine chemicals. Since these materials are finite and their (oil) price is increasing, it is clear that there will be a progressive increase in the chemical industry to use renewable raw materials as a source of energy, an inevitable necessity for humanity. The major challenge for the society in the twenty first century is to unite governments, universities, research centers, and corporations to jointly act in all areas of science with one goal of finding a solution to global problems, such as conversion of biomass into compounds for the fine chemical industry.Non-renewable raw materials are used in the preparation of fuels, chemical intermediates, and derivatives for the fine chemical industry. However, their stock in nature has a finite duration, and their price is high and will likely increase with their depletion. In this scenario, the alternative is to use renewable biomass as a replacement for petrochemicals in the production of fine chemicals. As the production of biomass-based carbohydrates is the most abundant in nature, it is judicious to develop technologies for the generation of chain products (fuels, chemical intermediates, and derivatives for the fine chemicals industry) using this raw material. This paper presents some aspects and opportunities in the area of carbohydrate chemistry toward the generation of compounds for the fine chemical industry.
Resumo:
Glycerol, a co-product of biodiesel production, was used as a carbon source for the kinetics studies and production of biosurfactants by P. aeruginosa MSIC02. The highest fermentative parameters (Y PX = 3.04 g g-1; Y PS = 0.189 g g-1, P B = 31.94 mg L-1 h-1 and P X = 10.5 mg L-1 h-1) were obtained at concentrations of 0.4% (w/v) NaNO3 and 2% (w/v) glycerol. The rhamnolipid exhibited 80% of emulsification on kerosene, surface tension of 32.5 mN m-1, CMC = 28.2 mg L-1, C20 (concentration of surfactant in the bulk phase that produces a reduction of 20 dyn/cm in the surface tension of the solvent) = 0.99 mg L-1, Γm (surface concentration excess) = 2.4 x 10-26 mol Å-2 and S (surface area) = 70.4 Ų molecule-1 with solutions containing 10% NaCl. A mathematical model based on logistic equation was considered to representing the process. Model parameters were estimated by non-linear regression method. This approach was able to give a good description of the process.
Resumo:
Various vegetables as biological catalysts were evaluated in enantioselective reduction of carbonyl compounds. The stereoselectivity of the process was in agreement with Prelog's rule for twelve of the vegetables, whereas okra and green peppers formed anti-Prelog products. Zingiber officinale exhibited the best results with 30% conversion and 89% ee. The parameters of the reaction such as time, solvent and other substrates investigated, as well as the specie, showed good chemo- and enantioselectivity.
Resumo:
An enzymatic spectrophotometric method for the determination of methyldopa in a dissolution test of tablets was developed using peroxidase from radish (Raphanus sativus). The enzyme was extracted from radish roots using a phosphate buffer of pH 6.5 and partially purified through centrifugation. The supernatant was used as a source of peroxidase. The methyldopachrome resulting from the oxidation of methyldopa catalyzed by peroxidase was monitored at 480 nm. The enzymatic activity was stable for a period of at least 25 days when the extract was stored at 4 or -20 ºC. The method was validated according to RDC 899 and ICH guidelines. The calibration graph was linear in the range 200-800 µg mL-1, with a correlation coefficient of 0.9992. The limits of detection and quantification in the dissolution medium were 36 and 120 µg mL-1, respectively. Recovery was greater than 98.9%. This method can be applied for the determination of methyldopa in dissolution tests of tablets without interference from the excipients.
Resumo:
O estudo do efeito da complexidade estrutural da fonte de nitrogênio no transporte de amônio em Saccharomyces cerevisiae foi realizado cultivando-se o microrganismo em um meio mínimo contendo glicose e fontes de nitrogênio, variando de um simples sal de amônio (sulfato de amônio) a aminoácidos livres (casaminoácidos) e peptídeos (peptona). O transporte de amônio foi avaliado acompanhando-se a entrada do análogo metilamônio, utilizando duas metodologias diferentes: transporte de metilamônio radioativo e efluxo de potássio acoplado ao transporte de metilamônio em células crescidas em diferentes condições de cultivo. A cinética de transporte de amônio é detectada nos meios contendo peptona e amônio e não no meio suplementado com casaminoácidos, e o transporte medido em diferentes fases de crescimento sugere que o processo é mais estável em células crescidas em peptona. Os resultados descritos neste trabalho indicam que a complexidade estrutural interfere com a expressão do transportador do íon amônio e que a complementação do meio de cultura com uma fonte de nitrogênio na forma de peptídeos é a mais eficiente não só para a expressão do transportador de amônio, mas também de conferir maior estabilidade ao processo.