97 resultados para digestibilidade in vitro e in vivo
Resumo:
Statins are among the most prescribed drugs in recent clinical practice. They are also known for their pleiotropic actions, which are independent of their lipid-lowering properties. The effect of lovastatin was investigated against carrageenan-induced paw edema in male Wistar rats (200-250 g) and on leukocyte migration, as measured by carrageenan-induced peritonitis in male Swiss mice (20-25 g), which are models of acute inflammation. Lovastatin (administered 1 h prior to carrageenan), at oral doses of 2, 5, and 10 mg/kg, markedly attenuated paw edema formation in rats at the 4th hour after carrageenan injection (25, 43, and 37% inhibition, respectively). Inhibitions of 20, 45 and 80% were observed in the leukocyte migration, as evaluated by carrageenan-induced peritonitis in mice with lovastatin doses of 0.5, 1 and 5 mg/kg, as compared to controls. Furthermore, lovastatin (administered 1 h before initiation) reduced the nociceptive effect of the formalin test in mice, at both phases, at doses of 2, 5, and 10 mg/kg: first phase (51, 65, and 70%, respectively) and second phase (73, 57, and 66% inhibition of licking time, respectively). The anti-nociceptive activity of lovastatin was inhibited by naloxone (3 mg/kg, sc). Lovastatin (0.01, 0.1, and 1 µg/mL) inhibited by 23, 79, and 86%, respectively, the release of myeloperoxidase from human neutrophils. Leukocyte (predominantly neutrophils) infiltration was almost completely reduced by lovastatin treatment, as observed in the model of acute paw edema with hematoxylin and eosin staining. In addition, lovastatin decreased the number of cells expressing tumor necrosis factor-α (TNF-α) and the inducible form of nitric oxide synthase (iNOS) activity. Therefore, the alterations in leukocyte activity and cytokine release could contribute to the anti-inflammatory activity of lovastatin.
Resumo:
Intravesical chemotherapy is an important part of the treatment for superficial bladder cancer. However, the response to it is limited and its side effects are extensive. Functional single-walled carbon nanotubes (SWNT) have shown promise for tumor-targeted accumulation and low toxicity. In the present study, we performed in vivo and in vitro investigations to determine whether SWNT-based drug delivery could induce high tumor depression in rat bladder cancer and could decrease the side effects of pirarubicin (tetrahydropyranyl-adriamycin, THP). We modified SWNT with phospholipid-branched polyethylene glycol and constructed an SWNT-THP conjugate via a cleavable ester bond. The cytotoxicity of SWNT-THP against the human bladder cancer cell line BIU-87 was evaluated in vitro. Rat bladder cancer in situ models constructed by N-methyl-N-nitrosourea intravesical installation (1 g/L, 2 mg/rat once every 2 weeks for 8 weeks) were used for in vivo evaluation of the cytotoxicity of SWNT and SWNT-THP. Specific side effects in the THP group including urinary frequency (N = 12), macroscopic hematuria (N = 1), and vomiting (N = 7) were identified; however, no side effects were observed with SWNT-THP treatment. Flow cytometry was used to assess the cytotoxicity in vitro and in vivo. Results showed that SWNT alone did not yield significant tumor depression compared to saline (1.74 ± 0.56 and 1.23 ± 0.42%) in vitro. SWNT-THP exhibited higher tumor depression than THP-saline in vitro (74.35 ± 2.56 and 51.24 ± 1.45%) and in vivo (52.46 ± 2.41 and 96.85 ± 0.85%). The present findings indicate that SWNT delivery of THP for the treatment of bladder cancer leads to minimal side effects without loss of therapeutic efficacy. Therefore, this nanotechnology may play a crucial role in the improvement of intravesical treatment of bladder cancer.
Resumo:
Natural products produced by microorganisms have been an important source of new substances and lead compounds for the pharmaceutical industry. Chromobacterium violaceum is a Gram-negative β-proteobacterium, abundant in water and soil in tropical and subtropical regions and it produces violacein, a pigment that has shown great pharmaceutical potential. Crude extracts of five Brazilian isolates of Chromobacterium sp (0.25, 2.5, 25, and 250 µg/mL) were evaluated in an in vitro antitumor activity assay with nine human tumor cells. Secondary metabolic profiles were analyzed by liquid chromatography and electrospray ionization mass spectrometry resulting in the identification of violacein in all extracts, whereas FK228 was detected only in EtCE 308 and EtCE 592 extracts. AcCE and EtCE 310 extracts showed selectivity for NCI/ADR-RES cells in the in vitro assay and were evaluated in vivo in the solid Ehrlich tumor model, resulting in 50.3 and 54.6% growth inhibition, respectively. The crude extracts of Chromobacterium sp isolates showed potential and selective antitumor activities for certain human tumor cells, making them a potential source of lead compounds. Furthermore, the results suggest that other compounds, in addition to violacein, deoxyviolacein and FK228, may be involved in the antitumor effect observed.
Resumo:
The compounds 6-dimethylaminopurine and cycloheximide promote the successful production of cloned mammals and have been used in the development of embryos produced by somatic cell nuclear transfer. This study investigated the effects of 6-dimethylaminopurine and cycloheximide in vitro, using the thiazolyl blue tetrazolium bromide colorimetric assay to assess cytotoxicity, the trypan blue exclusion assay to assess cell viability, the comet assay to assess genotoxicity, and the micronucleus test with cytokinesis block to test mutagenicity. In addition, the comet assay and the micronucleus test were also performed on peripheral blood cells of 54 male Swiss mice, 35 g each, to assess the effects of the compounds in vivo. The results indicated that both 6-dimethylaminopurine and cycloheximide, at the concentrations and doses tested, were cytotoxic in vitro and genotoxic and mutagenic in vitro and in vivo, altered the nuclear division index in vitro, but did not diminish cell viability in vitro. Considering that alterations in DNA play important roles in mutagenesis, carcinogenesis, and morphofunctional teratogenesis and reduce embryonic viability, this study indicated that 6-dimethylaminopurine and cycloheximide utilized in the process of mammalian cloning may be responsible for the low embryo viability commonly seen in nuclear transfer after implantation in utero.
Resumo:
This study investigated the in vitro and in vivo antiproliferative activity of esculetin against hepatocellular carcinoma, and clarified its potential molecular mechanisms. Cell viability was determined by the MTT (tetrazolium) colorimetric assay. In vivoantitumor activity of esculetin was evaluated in a hepatocellular carcinoma mouse model. Seventy-five C57BL/6J mice were implanted with Hepa1-6 cells and randomized into five groups (n=15 each) given daily intraperitoneal injections of vehicle (physiological saline), esculetin (200, 400, or 700 mg·kg-1·day-1), or 5-Fu (200 mg·kg-1·day-1) for 15 days. Esculetin significantly decreased tumor growth in mice bearing Hepa1-6 cells. Tumor weight was decreased by 20.33, 40.37, and 55.42% with increasing doses of esculetin. Esculetin significantly inhibited proliferation of HCC cells in a concentration- and time-dependent manner and with an IC50 value of 2.24 mM. It blocked the cell cycle at S phase and induced apoptosis in SMMC-7721 cells with significant elevation of caspase-3 and caspase-9 activity, but did not affect caspase-8 activity. Moreover, esculetin treatment resulted in the collapse of mitochondrial membrane potential in vitro and in vivo accompanied by increased Bax expression and decreased Bcl-2 expression at both transcriptional and translational levels. Thus, esculetin exerted in vitro and in vivo antiproliferative activity in hepatocellular carcinoma, and its mechanisms involved initiation of a mitochondrial-mediated, caspase-dependent apoptosis pathway.
Resumo:
Although the metabolism of early bovine embryos has not been fully elucidated, several publications have addressed this important issue to improve culture conditions for cattle reproductive biotechnologies, with the ultimate goal of producing in vitro embryos similar in quality to those developing in vivo. Here, we review general aspects of bovine embryo metabolism in vitro and in vivo, and discuss the use of metabolic analysis of embryos produced in vitro to assess viability and predict a viable pregnancy after transference to the female tract.
Resumo:
The aim of the present paper was to provide the evidences for the antioxidant activity in Halimeda incrassata (Ellis) Lamouroux aqueous extracts obtained after simple water extraction of the fresh algae at room temperature (23°C). Previously in the literature, only antioxidant activity associated to carotenoids fractions of seaweeds has been reported. From different species of seaweeds, Halimeda incrassata aqueous extract exhibited the highest antioxidant activity on the inhibition of TBARS formed during the spontaneous lipid peroxidation of rat brain homogenates with an IC50 of 0.340mg.mL-1. Halimeda incrassata aqueous extract (0.5mg.mL-1), was also capable of decreasing the in vitro generation of hydrogen peroxide by two distinct metabolic pathways involving glutamic and malonic acids. Also, Halimeda incrassata (at doses of 50, 100 and 200mg.Kg-1) showed a neuroprotective effect in vivo on the gerbil model of bilateral carotid occlusion because of decreasing the locomotor and exploratory activity induced by ischemia. In summary, Halimeda incrassata aqueous extracts exhibit antioxidant properties in different in vitro as well as in vivo models which could be explained by the presence of several hydrosoluble compounds. Further studies on this way are necessary to elucidate the precise structure of these compounds. Low toxicity of most seaweeds to humans, but particularly of Halimeda genus may favor its use as functional food.
Resumo:
Ultimamente tem-se verificado aumento do uso de nutrição enteral (NE) em domicílio, objetivando reduzir custos e melhorar a qualidade de vida. Contudo, é importante monitorar o valor nutricional das dietas. Nesse estudo foram avaliadas as formulações F1 e F2 (ARAÚJO; GALEAZZI, 1999) contendo carne bovina, ovo (F1), chicória, cenoura, fubá de milho, extrato hidrossolúvel de soja, óleo de soja, Nidex® e sal, para uso em NE ou oral domiciliar, objetivando obter dados mais confiáveis e seguros. Foram determinadas: composição centesimal, digestibilidade in vitro e lisina disponível. As composições centesimais (base seca) foram as seguintes: F1: calorias 454,69, umidade 79,29±0,07, proteína 17,04±0,06, lipídios 14,85±0,11, carboidratos 63,22, fibra alimentar solúvel 0,67±0,66 e insolúvel 1,65±0,73, cinzas 2,57±0,01; F2: calorias 463,92, umidade 78,96±0,09, proteína 16,56±0,09, lipídios 15,12±0,20, fibra alimentar solúvel 1,09±0,11 e insolúvel 1,84±0,09, carboidratos 65,40 e cinzas 2,63±0,08. A distribuição calórica mostrou-se adequada. Os teores de lisina eram 80 mg/g de proteína para F1 e 139 para F2. A digestibilidade (%) das proteínas foi 95 para F1 e 93 para F2. As formulações são factíveis de preparo em domicílio, possuem fontes de proteína de boa qualidade, baixo custo, podendo atender às necessidades nutricionais de indivíduos em terapia nutricional domiciliar e promover a recuperação nutricional.
Resumo:
Penicillium expansum is the causative agent of apple blue mold. The inhibitory effects of the capsaicin derived from Capsicum spp. fruits and yeast Hansenula wingei against P. expansum were evaluated in an in vitro and in in vivo assay using Fuji apples. The minimum inhibitory concentration of capsaicin determined using the broth micro-dilution method was 122.16 µg mL-1. Capsaicin did not reduce blue mold incidence in apples. However, it was able to delay fungal growth in the first 14 days of the in vivo assay. The in vivo effect of the yeast Hansenula wingei AM2(-2), alone and combined with thiabendazole at low dosage (40 µg mL-1), on the incidence of apple diseases caused by P. expansum was also described. H. wingei AM2(-2) combined with a low fungicide dosage (10% of the dosage recommended by the manufacturer) showed the best efficacy (100%) up to 7 days of storage at 21 ºC, later showing a non-statistically different decrease (p > 0.05) after 14 (80.45%) and 21 days (72.13%), respectively. These results contribute providing new options for using antifungal agents against Penicillium expansum.
Resumo:
Abstract Oxygen metabolism in cells causes the production of free radicals, which produce damage, including changes in cell structure and function. Antioxidants are substances that, at low concentrations, slow down or prevent oxidation. Fruits and vegetables contribute to the dietary supply of these compounds. The flora of the Cerrado in Brazil has shown to have high levels of bioactive compounds. This study aimed to characterize the antioxidant activity of the pulp of jatobá-do-cerrado in vitro and in vivo.In vitro antioxidant activity of the aqueous, ethanol and aqueous acetone extracts was evaluated by the DPPH method. We determined total phenols by the Folin-Ciocalteu assay and tannins by the Folin-Denis method.In vivo antioxidant potential of the aqueous acetone extract was evaluated by the TBARS technique. The aqueous acetone extract had the highest antioxidant capacity, followed by the aqueous and ethanol extracts. The same pattern occurred in the extraction of phenols and in the extraction of tannins. In vivo administration of the aqueous acetone extract inhibited lipid peroxidation compared to the control group. The inhibition of peroxidation has increased by elevating the dosage concentration of the extracts, demonstrating a significant antioxidant potential in vivo as well as in vitro.
Resumo:
Plasmodium parasites degrade host hemoglobin to obtain free amino acids, essential for protein synthesis. During this event, free toxic heme moieties crystallize spontaneously to produce a non-toxic pigment called hemozoin or ß-hematin. In this context, a group of azole antimycotics, clotrimazole (CTZ), ketoconazole (KTZ) and fluconazole (FCZ), were investigated for their abilities to inhibit ß-hematin synthesis (IßHS) and hemoglobin proteolysis (IHbP) in vitro. The ß-hematin synthesis was recorded by spectrophotometry at 405 nm and the hemoglobin proteolysis was determined by SDS-PAGE 12.5%, followed by densitometric analysis. Compounds were also assayed in vivo in a malaria murine model. CTZ and KTZ exhibited the maximal effects inhibiting both biochemical events, showing inhibition of β-hematin synthesis (IC50 values of 12.4 ± 0.9 µM and 14.4 ± 1.4 µM respectively) and inhibition of hemoglobin proteolysis (80.1 ± 2.0% and 55.3 ± 3.6%, respectively). There is a broad correlation to the in vivo results, especially CTZ, which reduced the parasitemia (%P) of infected-mice at 4th day post-infection significantly compared to non-treated controls (12.4 ± 3.0% compared to 26.6 ± 3.7%, p = 0.014) and prolonged the survival days post-infection. The results indicated that the inhibition of the hemoglobin metabolism by the azole antimycotics could be responsible for their antimalarial effect.
Resumo:
Sitice most studies on the cercaria-schistosomulum transformation have been carried out in vitro, the authors used the inoculation ofcercariae into the peritoneal cavity of mice tofollow the steps involved in this progressive adaptation of cercarie to the vertebmte host. The main conclusions were: 1. Most cercariae reach the schistosomular stage between 90-120 min after intraperitoneal inoculation. 2. Changes usuallystart with detachment of the tail followed by loss, rupture or changes of the glycocalix. 3. After 120 min most larvae loss their tails and present water sensitivity. 4. Acetabular grands depletion usually does not occur in cercaria-shistosomulum changes in the peritoneal cavity of mice. These steps differ in some way from those described in the kinetics of the in vitro observations performed by other investigators, and is more like those described in the penetration in the skin of living vertebrates.
Resumo:
O estudo da propagação de espécies utilizadas na medicina popular tem sido intensificado nos últimos anos devido ao crescente investimento em pesquisas para a descoberta de novos fármacos e da utilização da fitoterapia como um meio alternativo. O objetivo do trabalho foi a propagação in vivo e in vitro (estabelecimento e multiplicação) de Cissus sicyoides. Plantas mantidas em casa de vegetação forneceram estacas com 10 e 20 cm de comprimento, as quais foram tratadas com 0, 80 ou 160 mg/l de AIB, com ou sem sacarose + ácido bórico, por duas horas. Para o estabelecimento in vitro, após desinfestação, segmentos nodais com 10 mm de comprimento foram inoculados em meio de cultura sólido (MS), com diferentes concentrações de cinetina, BAP e ANA. Para a multiplicação in vitro, segmentos nodais com 10 mm foram inoculados em meio MS, suplementado com diferentes concentrações de BAP e ANA, e ANA e cinetina. Na propagação in vivo as estacas com 10 cm de comprimento apresentaram maior eficiência no enraizamento quando tratadas com 160 mg/l de AIB. In vitro os explantes foram melhor estabelecidos e multiplicados em meio de cultura suplementado com cinetina e ANA, que proporcionaram maior indução de gemas, crescimento em altura e ausência de calos na base das plântulas.
Resumo:
Esquistossômulos obtidos através de processo mecânico foram injetados na veia da cauda de camundongos Balb/c (2.000 esquist./0,15ml) e as reações pulmonares foram estudadas histologicamente após 24, 48, 72 e 96 horas. Os animais estavam divididos em quatro grupos: 1) animais normais injetados com esquistossômulos vivos; 2) animais normais injetados com esquistossõmulos mortos; 3) animais infectados há dez semanas com 30 cercárias do Schistosoma mansoni e injetados com esquistossômulos vivos e 4) animais semelhantes aos do grupo acima, mas injetados com esquistossômulos mortos. As reações pulmonares bem desenvolvidas em torno dos esquistossômulos, só foram observadas nos animais injetados com esquistossômulos mortos e foram mais intensas e com maior quantidade de eosinófilos nos animais já infectados. estes resultados diferem daqueles observados in vitro, em que os esquistossômulos são destruídos por um sistema composto de anticorpos específicos, complemento e eosinófilos, estas últimas células destruindo as larvas por citoaderência, degranulação e citotoxidade. O presente trabalho indica que in vitro a infilstração de eosinófilos ocorre após a morte das larvas, no animal sensibilizado.