122 resultados para cation exchange resin
Resumo:
Cation exchange capabilities of a Brazilian natural zeolite, identified as scolecite, were evaluated for application in wastewater control. We investigated the process of sorption of chromium(III), nickel(II), cadmium(II) and manganese(II) in synthetic aqueous effluents, including adsorption isotherms of single-metal solutions. The natural zeolite showed the ability to take up the tested heavy metals in the order Cr(III) > Cd(II) > Ni(II) > Mn(II), and this could be related to the valence and the hydration radius of the metal cations. The influence of temperature (25, 40 and 60 ºC) and initial pH value (from 4 to 6) was also evaluated. It was found that the adsorption increased substantially when the temperature was raised to 60 ºC and that maximum adsorption capacity was observed at pH 6. These results demonstrate that scolecite can be used for removal of heavy metals from aqueous effluents, under optimized conditions.
Remediação de drenagem ácida de mina usando zeólitas sintetizadas a partir de cinzas leves de carvão
Resumo:
Zeolitic material was synthesized from coal fly ashes (baghouse filter fly ash and cyclone filter fly ash) by hydrothermal alkaline activation. The potential application of the zeolitic product for decontamination of waters from acid mine drainage was evaluated. The results showed that a dose of 30 g L-1 of zeolitic material allowed the water to reach acceptable quality levels after treatment. Both precipitation and cation-exchange processes accounted for the reduction in the pollutant concentration in the treated waters.
Resumo:
Soils play an important role in the biogeochemical cycle of mercury as a sink for and source of this metallic species to atmospheric and hydrological compartments. In the study reported here, various types of soil were evaluated to ascertain the influence of parameters such as pH, organic matter content, Fe, Al, sand, silt, clay, C/H, C/N, C/O atomic ratios, and cation exchange capacity on the distribution of Hg in Amazonia's mid-Negro River basin. The data obtained were interpreted by multivariate exploratory analyses (hierarchical cluster analysis and principal component analysis), which indicated that organic matter plays an important role in mercury uptake in the various soils studied. The soils in floodable areas were found to contain 1.5 to 2.8-fold higher Hg concentrations than those in non-floodable areas. Since these soils are flooded almost year-round, they are less available to participate in redox processes at the soil/atmosphere interface. Hence, floodable areas, which comprise humic-rich soils, accumulate more mercury than non-floodable soils, thus playing an important role in the biogeochemical cycle of Hg in Amazonia's mid-Negro River basin.
Resumo:
A method for determining copper by solid phase spectrophotometry (SPS) was optimized using the Doehlert design. Copper(II) was sorbed on a styrene-divinylbenzene anion-exchange resin as a Cu(II)-1-(2-pyridylazo)-2-naphthol (PAN) complex, at pH 7.0. Resin phase absorbances at 560 and 800 nm were measured directly. The detection limit was found to be 2.5 µg L-1. The relative standard deviation on ten replicate determinations of 10 µg Cu(II) in 1000 mL samples was 1.1%. The linear range of the determination was 5.0-100 µg L-1. The method was applied successfully to the determination of Cu(II) in natural water and vegetable samples.
Resumo:
The main objective of this work is to develop an efficient procedure to determine glyphosate in soybean grains. The cleanup of the aqueous extracts was done in two steps, beginning with liquid-liquid partitioning and then solid-phase extraction with anion exchange resin. After derivatization with a mixture of trifluoroacetic anhydride (TFAA) and trifluoroethanol (TFE), quantification was done by gas chromatography coupled to mass spectrometry. The mean recovery and RSD of the spiked samples were, respectively, 80.5% and 3.1% at level 0.200 mg kg-1, 93.3% and 18.7% at level 0.500 mg kg-1 and 92% and 3.5% at level 1.000 mg kg-1. The method was linear in the working range (correlation coefficient = 0.9965).
Resumo:
In this work it is proposed a simple and versatile undergraduate chemical experiment in polymer and environmental technology based on the process of polyethylene terephthalate (PET) hydrolysis. Polyethylene terephthalate from post-consume bottles is submitted to a controlled partial hydrolysis which allows the students to follow the reaction by a simple procedure. The students can explore the reaction kinetics, the effect of catalysts and the exposed polyethylene terephthalate surface area on the hydrolysis reaction. The second and innovative part of this experiment is the technological and environmental application of the hydrolyzed polyethylene terephthalate as a material with cation exchange properties. The surface hydrolyzed polyethylene terephthalate can be used as adsorbent for cationic contaminants.
Resumo:
Two processes are used to stabilize organic wastes: composting and vermicomposting.There are no studies in the literature showing which process is most effective over the short term. In this study, 3 organic wastes were composted and vermicomposted for 90 days, and the parameters pH, effective cation exchange capacity, total organic carbon, total Kjeldahl nitrogen, Ptotal, E4/E6 ratio, hydrophobicity and aromaticity indexes were determined. In all experiments, vermicomposted materials showed higher stability, proving a superior tool for stabilization of these organic wastes.
Resumo:
This article reports the use of polyaniline (PAni), chemically and electrochemically synthesized, for copper removal from aqueous solutions. PAni films were electrodeposited on reticulated vitreous carbon (RVC). In all cases, p-toluenesulfonate anion (PTS-) was used as the dopant to obtain cation exchange properties. RVC/PAni showed no expressive copper removal due to the small amount of polymer in the film. Chemically synthesized PAni-PTS- was obtained in its reduced form (leucoesmeraldine). PAni degraded at neutral pH but remained stable at low pH, showing a very high ion-exchange capacity, which is superior to those observed for commercial resins.
Resumo:
This study aims to synthesize and characterize organoclays developed from an Argentinian montmorillonite (Bent) using hexadecyltrimethylammonium bromide (HDTMA-Br) as the intercalation agent. Subsequently, an adsorption mechanism is proposed. The obtained organoclays were more hydrophobic than the starting clay. Surfactant molecules were adsorbed initially through cation exchange in sites placed in the interlayer space of the clay. Adsorption in such sites continued until the interlayer space was saturated. Depending on the surfactant loading introduced during the intercalation process, different organizations of surfactant in the interlayer were obtained. Further adsorption of surfactant occurred in the mesopores generated by tactoids in the "house of cards" organization. This process kept surfactant molecules relatively free and out of the interlayer space.
Resumo:
The potassium ion, present in great amount in the vinasse because it is a monovalent cation, has the characteristic of promoting the dispersion of clay particles, in the same way as the sodium, causing a reduction in the pore space of the soil and, in its turn, reducing its permeability. To evaluate this effect of reduction by application of vinasse to the soil, an experiment was conducted for three different soils, with the objective of evaluating the effect of the application of different doses of vinasse on hydraulic conductivity of saturated soil and verifying its possible chemical changes of these soils. For that, it was used PVC columns (in a scheme of constant head permeameter to obtain the values of hydraulic conductivity of saturated soil), filled with three soils - Dark Red Latosol (DRL), Purple Latosol (PL) and Eutrophic Red Nitossol (ERN) - , in which were applied four doses of vinasse (0, 150, 300 and 450m³ ha-1), distributed in a completely randomized design with a 3x4 factorial scheme with three replications. The results evidenced that only the Dark Red Latosol (DRL) showed a reduction in the values of hydraulic conductivity of saturated soil, and in front of the application of vinasse, up to 300m³ ha-1, it was observed an increase in the concentrations of potassium, calcium and cation exchange capacity (CEC) ions.
Resumo:
Atrazine persistence in soils of the southeast of Buenos Aires Province, was studied by an oat bioassay. Atrazine doses of 0.58, 1.16, and 2.32 mg.g-1 dry soil weight (DSW) were applied to pots containing soils from Balcaree, A. Gonzáles Chaves and San Cayetano sites, whose organic matter (OM) content of soils were 5.70, 5.15, and 3,84%, respectively. Avena sativa cv. Millauquén plants were grownth in the pots under greenhouse conditions at different times after atrazine application. Shoots were evenly cut above the soil and dry weight determined as a measure of plant growth. Plants grown in non-sprayed soil were used as controls. Relative dry weight (RDW) of shoots was calculated as percentage of control. Atrazine phytotoxicity was expressed in terms of 50 % plant growth reduction (GR50) in the soils under study. Herbicide persistence was expressed in terms of days after treatment (DAT) needed for the plant to achieve 80% of RDW. Atrazine GR50 values of 0.30, 0.64, and 0.90 mg.g-1 DSW in soils from San Cayetano, Balcare and A.G. Chaves, were respectively obtained at 42 DAT. Herbicide persistences at the recommended dose (1.16 mg.g-1) were 100, 143, and 221 DAT for A.G. Chaves, Balcarce and San Cayetano soils, respectively. San Cayetano soil had both the lowest OM content and cation exchange capacity (CEC), as well as the highest pH, of all the soil studied here. These results were consistent with both the lowest GR50 and the highest persistence abtained for atrazine in this soil.
Resumo:
Several degraded areas can be found along the Highway MG-010 that crosses the Espinhaço Mountain Biosphere Reserve in the Brazilian state of Minas Gerais. Restoration by planting the legume Cajanus cajan was implemented in some of these areas. The present study compares plant species richness, diversity, abundance, equitability, similarity, and soil composition between restored and non-restored areas, in an attempt to evaluate the effectiveness of the use of C. cajan in the restoration process in the mountain environment. Each treatment (restored and non-restored) had four sampling areas, each with three 300 m² plots. We counted and identified every individual plant found within these plots. We also collected soil from the superficial layer (0-10 cm) of each sampling area in both treatments. The areas where C. cajan was planted revealed lower species richness, diversity, and plant abundance. The soil of these areas also contained higher levels of Phosphorus and Magnesium. Plant equitability and similarity between plots and other soil components (pH, Nitrogen, Aluminum, Calcium, Potassium, H+Al, sum of bases - SB, cation exchange capacity - CTC, base saturation - V%, aluminum saturation - M%) did not differ between the two treatments. Contrary to the expectations, soil enhancement in the quartzitic soil poor in nutrients in the rupestrian fields can facilitate the invasion by exotic plants, which are not adapted to the lack of nutrients. As it appears, the use of C. cajan in restoration projects represents a mistake and future restoration plans should avoid the use of exotic species, given that they may cause negative effects on the native plant community, as demonstrated here in the rupestrian fields.
Resumo:
Bothrops venoms are complex mixtures of components with a wide range of biological activities. Among these substances, myotoxins have been investigated by several groups. Bothropstoxin-1 (Bthtx-1) is a phospholipase A2-like basic myotoxin from Bothrops jararacussu. The purification of this component involves two chromatographic steps. Although providing a pure material, the association of these two steps is time consuming and a single-step method using high performance chromatography media would be useful. In the present study, we describe a single-step purification method for Bthtx-1. Bothrops jararacussu venom was dissolved in 1 ml buffer. After centrifugation, the supernatant was injected into a Resource-S cation exchange column connected to an FPLC system and eluted with a linear salt gradient. The complete procedure took 20 min, representing a considerable time gain when compared to a previously described method (Homsi-Brandenburgo MI et al. (1988) Toxicon, 26: 615-627). Bthtx-1 purity and identity, assessed by SDS-PAGE and N-terminal sequencing, resulted in a single band with a molecular mass of about 14 kDa and the expected sequence of the first 5 residues, S-L-F-E-L. Although the amount of protein purified after each run is lower than in the previously described method, we believe that this method may be useful for small-scale purifications.
Resumo:
The Graphite furnace atomic absorption spectrometry (GF AAS) was the technique chosen by the inorganic contamination laboratory (INCQ/ FIOCRUZ) to be validated and applied in routine analysis for arsenic detection and quantification. The selectivity, linearity, sensibility, detection, and quantification limits besides accuracy and precision parameters were studied and optimized under Stabilized Temperature Platform Furnace (STPF) conditions. The limit of detection obtained was 0.13 µg.L-1 and the limit of quantification was 1.04 µg.L-1, with an average precision, for total arsenic, less than 15% and an accuracy of 96%. To quantify the chemical species As(III) and As(V), an ion-exchange resin (Dowex 1X8, Cl- form) was used and the physical-chemical parameters were optimized resulting in a recuperation of 98% of As(III) and of 90% of As(V). The method was applied to groundwater, mineral water, and hemodialysis purified water samples. All results obtained were lower than the maximum limit values established by the legal Brazilian regulations, in effect, 50, 10, and 5 µg.L-1 para As total, As(III) e As(V), respectively. All results were statistically evaluated.
Resumo:
This research aimed to determine the soil seed bank and its relationship with environmental factors that have an influence in the distribution of the vegetation above the ground in an excluded area of natural grassland in the South of Brazil. Most of the 122 identified species in the seed bank were perennials. Data analysis indicated three distinct community groups, according to the size and composition of the soil seed bank in lowlands with permanent wet soils, in lowlands and in other areas. In general, lowlands were characterized by low-fertility soils, high moisture and aluminum contents, being spatially homogeneous habitats and, therefore, more restricted to vegetation heterogeneity than other parts of the relief. Environmental factors most associated with soil seed bank size and composition were relief position and their co-related soil variables such as: soil moisture content, potassium content, organic matter, basic saturation of cation exchange soil capacity, exchangeable basics sum of the soil and clay soil content. According to that, relief position, associated with combined effects of soil chemical properties related to it, determines the observed variation pattern of the soil seed bank, as a reflection of the vegetation above the area.