129 resultados para Sodium retention
Resumo:
The present work analyzed the effect of the temperature and type of salt on the phase equilibrium of aqueous two-phase systems (ATPS) formed by poly (ethylene glycol) (PEG) 1500 + potassium phosphate, from (278.15 to 318.15) K, and PEG 1500 + sodium citrate, from (278.15 to 298.15) K. The rise of the temperature normally increased the slope of the tie line (STL). With respect to the influence of the type of salt, sodium citrate showed better capability to induce phase separation, when compared to potassium phosphate.
Resumo:
The aim of this work is the production and characterization of plasma polymerized acetaldehyde thin films. These films show highly polar species, are hydrophilic, organophilic and easily adsorb organic reactants with CO radicals but only allow permeation of reactants with OH radicals. The good step coverage of films deposited on aluminum trenches is useful for sensor development. Films deposited on hydrophobic substrates may result in a discontinued layer, which allows the use of preconcentration in sample pretreatment. Deposition on microchannels showed the possibility of chromatographic columns and/or retention system production to selectively detect or remove organic compounds from gas flows.
Resumo:
The study consists is the application of zeolites NaX, NaY and A as builder in detergent formulations to eliminate the hardness of water. Therefore, the adsorption of ions Ca+2 and Mg+2 were evaluated, and the effect of the cleaning action of the surfactant sodium dodecil sulfate (SDS) through tests of detergency. The experiments were conducted in bath system (with shaking) and quantification of metals was performed by atomic absorption spectrometry. Zeolite A showed the best results for adsorption of Ca++ and Mg++ with retention rates of around 90 and 70% respectively and acted positively on the action of cleaning the surfactant SDS.
Resumo:
The hydrophilic drug sodium alendronate was encapsulated in blended microparticles of Eudragit® S100 and Methocel® F4M or Methocel® K100LV. Both formulations prepared by spray-drying showed spherical collapsed shape and smooth surface, encapsulation efficiencies of 85 and 82% and mean diameters of 11.7 and 8.4 µm, respectively. At pH 1.2, in vitro dissolution studies showed good gastro-resistance for both formulations. At pH 6.8, the sodium alendronate release from the microparticles was delayed and was controlled by Fickian diffusion. In conclusion, the prepared microparticles showed high encapsulation efficiency of sodium alendronate presenting gastro-resistance and sustained release suitable for its oral administration.
Resumo:
A new method is described for the determination of the herbicide bispyribac-sodium in surface water, especially from river and irrigated rice water samples. The method involves extraction in solid phase and quantification by high performance liquid chromatography with diode array detection (HPLC-DAD). After optimization of the extraction and separation parameters, the method was validated. The method presented average recoveries of 101.3 and 97.7%, under repeatability and intermediate precision conditions, respectively, with adequate precision (RSD from 0.9 to 7.5%). The method was applied for the determination of bispyribac-sodium in surface water samples with a limit of detection of 0.1 μg L-1.
Resumo:
By using the van't Hoff and Gibbs equations the apparent thermodynamic functions Gibbs energy, enthalpy, and entropy of solution for sodium naproxen in ethanol + water cosolvent mixtures, were evaluated from solubility data determined at temperatures from (278.15 to 308.15) K. The drug solubility was greatest in neat water and lowest in neat ethanol at all the temperatures studied. By means of non-linear enthalpy-entropy compensation analysis, it follows that the dissolution process of this drug in ethanol-rich mixtures is entropy-driven, whereas, in water-rich mixtures the process is enthalpy-driven.
Resumo:
Genetic algorithm and multiple linear regression (GA-MLR), partial least square (GA-PLS), kernel PLS (GA-KPLS) and Levenberg-Marquardt artificial neural network (L-M ANN) techniques were used to investigate the correlation between retention index (RI) and descriptors for 116 diverse compounds in essential oils of six Stachys species. The correlation coefficient LGO-CV (Q²) between experimental and predicted RI for test set by GA-MLR, GA-PLS, GA-KPLS and L-M ANN was 0.886, 0.912, 0.937 and 0.964, respectively. This is the first research on the QSRR of the essential oil compounds against the RI using the GA-KPLS and L-M ANN.
Resumo:
Genetic algorithm and partial least square (GA-PLS) and kernel PLS (GA-KPLS) techniques were used to investigate the correlation between retention indices (RI) and descriptors for 117 diverse compounds in essential oils from 5 Pimpinella species gathered from central Turkey which were obtained by gas chromatography and gas chromatography-mass spectrometry. The square correlation coefficient leave-group-out cross validation (LGO-CV) (Q²) between experimental and predicted RI for training set by GA-PLS and GA-KPLS was 0.940 and 0.963, respectively. This indicates that GA-KPLS can be used as an alternative modeling tool for quantitative structure-retention relationship (QSRR) studies.
Resumo:
The aim of this study was to encapsulate curcumin into chitosan, using sodium tripolyphosphate (TPP) as an ionic crosslinker by the spray drying method. The influence of TPP on the properties of the final product, such as solubility, morphology, loading efficiency, thermal behavior, swelling degree and release profiles, was evaluated. The microparticles had a spherical morphology (0.5-20 µm) with no apparent porosity or cracks. Results indicated the formation of a polymeric network, which ensures effective protection for curcumin. Controlled-release studies were carried out at pH 1.2 and 6.8, to observe the influence of pH on curcumin release while the mechanism was analyzed using the Korsmeyer-Peppas equation.
Resumo:
Hydrogels have been prepared by free-radical solution copolymerization of acrylamide and sodium acrylate (NaAc), with molar ratio ranging from 25/75 to 80/20, respectively, using methylene bisacrylamide as the crosslinking agent. A FTIR spectroscopy procedure to determine the acrylate/acrylamide ratio in these hydrogels was proposed based on absorbance at 1410 cm-1 (nCOO-) and 2940 cm-1 (nCH and nCH2). A straight line with a good linear correlation coefficient (0.998) was obtained by plotting the acrylate content (Ac%) versus relative absorbance (Arel = A1410/A2940). Results were confirmed by the amount of sodium cation released in acid medium determined by atomic absorption spectrometry.
Resumo:
A simple and fast approach for solid phase extraction is herein described, and used to determine trace amounts of Pb2+ and Cu2+ metal ions. The solid phase support is sodium dodecyl sulfate (SDS)-coated γ-alumina modified with bis(2-hydroxy acetophenone)-1,6-hexanediimine (BHAH) ligand. The adsorbed ions were stripped from the solid phase by 6 mL of 4 M nitric acid as eluent. The eluting solution was analyzed by flame atomic absorption spectrometry (FAAS). The sorption recovery of metal ions was investigated with regard to the effects of pH, amount of ligand, γ-alumina and surfactant and the amount and type of eluent. Complexation of BHAH with Pb2+ or Cu2+ ions was examined via spectrophotometry using the HypSpec program. The detection limit for Cu2+ was 7.9 µg L-1 with a relative standard deviation of 1.67%, while that for Pb2+ was 6.4 µg L-1 with a relative standard deviation of 1.64%. A preconcentration factor of 100 was achieved for these ions. The method was successfully applied to determine analyte concentrations in samples of liver, parsley, cabbage, and water.
Resumo:
The application of automated correlation optimized warping (ACOW) to the correction of retention time shift in the chromatographic fingerprints of Radix Puerariae thomsonii (RPT) was investigated. Twenty-seven samples were extracted from 9 batches of RPT products. The fingerprints of the 27 samples were established by the HPLC method. Because there is a retention time shift in the established fingerprints, the quality of these samples cannot be correctly evaluated by using similarity estimation and principal component analysis (PCA). Thus, the ACOW method was used to align these fingerprints. In the ACOW procedure, the warping parameters, which have a significant influence on the alignment result, were optimized by an automated algorithm. After correcting the retention time shift, the quality of these RPT samples was correctly evaluated by similarity estimation and PCA. It is demonstrated that ACOW is a practical method for aligning the chromatographic fingerprints of RPT. The combination of ACOW, similarity estimation, and PCA is shown to be a promising method for evaluating the quality of Traditional Chinese Medicine.
Resumo:
The synthesis of sodium 2-chlorobenzylidenepyruvate and its corresponding acid as well as binary, binary together with it's acid or hydroxo-2-chorobenzylidenepyruvate of aluminium (III), gallium (III) and indium (III), were isolated. Chemical analysis, thermogravimetry, derivative thermogravimetry (TG/DTG), simultaneous thermogravimetry-differential thermal analysis (TG-DTA) and X-ray powder diffractometry have been employed to characterize and to study the thermal behaviour of these compounds. The results provided information concerning the stoichiometry, crystallinity, thermal stability and thermal decomposition.
Resumo:
An evaluation of hydration and thermal decomposition of HAlg and its sodium salt is described using thermogravimetry (TG) and differential scanning calorimetry (DSC). TG curves in N2 and air, were obtained for alginic acid showed two decomposition steps attributed to loss of water and polymer decomposition respectively. The sodium alginate decomposed in three steps. The first attributed to water loss, followed by the formation of a carbonaceous residue and finally the Na2CO3. DSC curves presented peaks in agreement with the TG data. In the IR alginic acid presented bands at 1730 and 1631 cm-1, while sodium alginate presented a doublet at 1614 e 1431 cm-1, evidencing the presence of salified carboxyl groups.
Resumo:
Capillary electrophoresis (CE) with capacitively coupled contactless conductivity detection (C4D) was used for determination of sodium and potassium concentrations in diet and non-diet soft drinks. Higher sodium concentrations were found in the diet samples due to the utilization of sodium salts of cyclamate and saccharine as sweeteners. The CE-C4D method can be used by food industries and health regulatory agencies for monitoring sodium and potassium content, not only in soft drink but in many others food products.