107 resultados para HIGHER-PLANTS
Resumo:
In order to adapt to daily environmental changes, especially in relation to light availability, many organisms, such as plants, developed a vital mechanism that controls time-dependent biological events: the circadian clock. The circadian clock is responsible for predicting the changes that occur in the period of approximately 24 hours, preparing the plants for the following phases of the cycle. Some of these adaptations can influence the response of weeds to the herbicide application. Thus, the objectives of this review are to describe the physiological and genetic mechanisms of the circadian clock in plants, as well as to demonstrate the relationship of this phenomenon with the effectiveness of herbicides for weed control. Relationships are described between the circadian clock and the time of application of herbicides, leaf angle and herbicide interception, as well as photosynthetic activity in response to the circadian clock and herbicide efficiency. Further, it is discussed the role of phytochrome B (phyB) in the sensitivity of plants to glyphosate herbicide. The greater understanding of the circadian clock in plants is essential to achieve greater efficiency of herbicides and hence greater control of weeds and higher crop yields.
Resumo:
More than 20% of the world's biodiversity is located in Brazilian forests and only a few plant extracts have been evaluated for potential antibacterial activity. In the present study, 705 organic and aqueous extracts of plants obtained from different Amazon Rain Forest and Atlantic Forest plants were screened for antibacterial activity at 100 µg/ml, using a microdilution broth assay against Staphylococcus aureus, Enterococcus faecalis, Pseudomonas aeruginosa and Escherichia coli. One extract, VO581, was active against S. aureus (minimum inhibitory concentration (MIC) = 140 µg/ml and minimal bactericidal concentration (MBC) = 160 µg/ml, organic extract obtained from stems) and two extracts were active against E. faecalis, SM053 (MIC = 80 µg/ml and MBC = 90 µg/ml, organic extract obtained from aerial parts), and MY841 (MIC = 30 µg/ml and MBC = 50 µg/ml, organic extract obtained from stems). The most active fractions are being fractionated to identify their active substances. Higher concentrations of other extracts are currently being evaluated against the same microorganisms.
Resumo:
The aim of this research was to investigate the antiproliferative and anticholinesterase activities of 11 extracts from 5 Annonaceae species in vitro. Antiproliferative activity was assessed using 10 human cancer cell lines. Thin-layer chromatography and a microplate assay were used to screen the extracts for acetylcholinesterase (AchE) inhibitors using Ellman's reagent. The chemical compositions of the active extracts were investigated using high performance liquid chromatography. Eleven extracts obtained from five Annonaceae plant species were active and were particularly effective against the UA251, NCI-470 lung, HT-29, NCI/ADR, and K-562 cell lines with growth inhibition (GI50) values of 0.04-0.06, 0.02-0.50, 0.01-0.12, 0.10-0.27, and 0.02-0.04 µg/mL, respectively. In addition, the Annona crassiflora and A. coriacea seed extracts were the most active among the tested extracts and the most effective against the tumor cell lines, with GI50 values below 8.90 µg/mL. The A. cacans extract displayed the lowest activity. Based on the microplate assay, the percent AchE inhibition of the extracts ranged from 12 to 52%, and the A. coriacea seed extract resulted in the greatest inhibition (52%). Caffeic acid, sinapic acid, and rutin were present at higher concentrations in the A. crassiflora seed samples. The A. coriacea seeds contained ferulic and sinapic acid. Overall, the results indicated that A. crassiflora and A. coriacea extracts have antiproliferative and anticholinesterase properties, which opens up new possibilities for alternative pharmacotherapy drugs.
Resumo:
Slow-release and organic fertilizers are promising alternatives to conventional fertilizers, as both reduce losses by leaching, volatilization and problems of toxicity and/or salinity to plants. The objective of this work was to evaluate the effect of different rates of the organic fertilizer Humato-Macota® compared with the slow-release fertilizer Osmocote® on the growth and nitrogen content in the dry matter of Rangpur lime. A field experiment was conducted in a factorial completely randomized design with an additional treatment (4 x 4 +1). The first factor consisted of four HumatoMacota® rates (0, 1, 2, and 3%) applied to the substrate; the second factor consisted of the same Humato-Macota® concentrations, but applied as fortnightly foliar sprays; the additional treatment consisted of application of 5 kgm-3 Osmocote® 18-05-09. Means of all growth characteristics (plant height, total dry matter, root/shoot ratio and leaf area) and the potential quantum yield of photosystem II (Fv/Fm) were higher when plants were fertilized with the slow-release fertilizer. The organic fertilizer applied alone did not meet the N requirement of Rangpur lime.
Resumo:
Reduction in leaf area in corn plants during reproduction changes physiological metabolism and consequently the accumulation of dry matter in grains. The aim of this work was to study changes in agronomic characteristics caused by defoliation in corn during the reproduction phase. The experiment was carried out in Uberlândia, Minas Gerais state, in the agricultural year 2007/2008. The experiment was arranged in a randomized block design, consisting of seven treatments: control without defoliation, removal of two apical leaves, removal of four apical leaves, removal of all leaves above spike, removal of four intermediate leaves, removal of all leaves below spike, and removal of all plant leaves, with five repetitions. The genotype used for the evaluations was hybrid NB 7376. Defoliation was carried out when plants were at the growth stage R2. The variables assessed were: yield, density of spikes and corncobs, root resistance and stem integrity. When all leaves above the spike were removed, grain yield was reduced by 20%. Corncob density, stem integrity and root resistance to uprooting were also affected. Spike density was only affected when all plant leaves were removed. The leaf area remaining physiologically active above the spike was found to be most efficient in terms of grain yield.
Resumo:
Due to the high energy requirement and demand for non-renewable resources for the production of chemical fertilizers, added also to the environmental impact caused by the use of such products, it is important to intensify research on bio-based agricultural inputs. The use of nitrogen-fixing endophytic and phosphate solubilizing bacteria can provide these nutrients to the plants from the air and poorly soluble phosphorus sources, such as phosphate rock. The objective of this study was to evaluate the nutrition and initial growth of maize (Zea mays L.) in response to the inoculation of nitrogen-fixing and rock phosphate solubilizing endophytic bacteria, in single or mixed formulation, applied with vermicompost. The treatments containing bacteria, both diazotrophic and phosphate solubilizing, when compared to controls, showed higher levels of leaf nitrogen and phosphorus in maize, as well as higher growth characteristics. The application of vermicompost showed synergistic effect when combined with endophytic bacteria. Thus, the innovation of the combination of the studied factors may contribute to the early development of maize.
Resumo:
Adventitious rooting of ornamental plants can be accelerated by the application of growth regulators, such as auxin. Humic acids, organic matter in soil and organic compounds also have a biostimulant effect. This work evaluated the rooting in cuttings of croton (Codianeum variegatum L. Rumph) and hibiscus (Hibiscus rosa-sinensis L) in response to the application of different concentrations of indolbutyric acid (IBA) and humic acid (HA). The experiment was carried out in a greenhouse. Apical stem cuttings were treated with solutions at concentrations of: 0, 250, 500, 1000, 2000 mg L-1 IBA and 0, 10, 20, 30, 40 mmol L-1 HA carbon isolated from vermicomposting. Forty-five days after the applications, the cuttings were removed from the pots containing carbonized rice hull and the following variables were measured: rooting number, length and width of leaves, fresh and dry matter of root and aerial part and root area. The results were subjected to analysis of variance and the qualitative and quantitative effects of the treatments were compared by contrast and regression, respectively. Regression equations were used to determine the maximum efficiency level of root dry matter according to IBA and HA. Higher accumulation of root dry matter was recorded for the treatments with the doses 579 mg L-1 IBA and 14 mmol L-1 HA and 970 mg L-1 IBA and 50 mmol L-1 HA for root cuttings of croton and hibiscus, respectively. It was found that the application of eiher IBA or HA at the indicated doses accelerates rooting in cuttings of croton and hibiscus and contributes to the formation of vigorous plants.
Resumo:
The use of cover crops is important for the agricultural crop and soil management in order to improve the system and, consequently, to increase yield. Therefore, the present study analyzed the effect of crop residues of black oat (Avena strigosa Schreb.) (BO) and a cocktail (CO) of BO, forage turnip (Raphanus sativus L.) (FT) and common vetch (Vicia sativa L.) (V) on the emergence speed index (ESI), seedling emergence speed (SES) plant height and soybean yield in different intervals between cover crop desiccation with glyphosate 480 (3 L ha-1) and BRS 232 cultivar sowing. Plots of 5 x 2.5 m with 1 m of border received four treatments with BO cover crops and four with CO as well as a control for each cover crop, at random, with five replications. The plots were desiccated in intervals of 1, 10, 20 and 30 days before soybean seeding. The harvest was manual while yield was adjusted to 13% of moisture content. The experimental design was completely randomized with splitplots and means compared by the Scott and Knott test at 5% of significance. The results showed that CO of cover crops can be recommended for soybean to obtain a more vigorous seedling emergence, from 10 days after cover crop desiccation.
Resumo:
In vitro propagation has become an effective practice for large-scale production of strawberry plants. The objective of this study was to evaluate the hyperhydricity and the multiplication capacity of two strawberry varieties (Fragaria x ananassa Duch. 'Dover' and 'Burkley') propagated in vitro. Plants maintained in MS medium supplemented with 1.0 mg L-1 BA were individualized and transferred to the same medium solidified with Agar (6.5 g L-1) or Phytagel® (2.5 g L-1) and BA at different concentrations (0; 0.5; 1.0; 2.0 and 3.0 mg L-1). Biochemical and anatomical analyses were carried out, as well as the analysis of the morphological hyperhydricity characteristics. The analysis of data showed: a) the increase in cytokinin concentration increased hyperhydricity frequency in both varieties; b) at concentrations up to 2.0 mg L-1 BA, the replacement of Agar by Phytagel® induced a higher formation of hyperhydric shoots; and c) the addition of BA induced oxidative stress, which is characterized by increased antioxidant activity and lipid peroxidation, as well as alterations at the cellular level, such as malformation of stomata and epidermal cells. In conclusion, the culture medium containing 0.5 mg L-1 BA solidified with Agar provided lower hyperhydricity percentages in association with higher rates of shoot proliferation in strawberry.
Resumo:
Besides its importance in the coffee tree nutrition, there is almost no information relating zinc nutrition and bean quality. This work evaluated the effect of zinc on the coffee yield and bean quality. The experiment was conducted with Coffea arabica L. in "Zona da Mata" region, Minas Gerais, Brazil. Twelve plots were established at random with 4 competitive plants each. Treatments included plants supplemented with zinc (eight plots) and control without zinc supplementation (four plots). Plants were subjected to two treatments: zinc supplementation and control. Yield, number of defective beans, beans attacked by berry borers, bean size, cup quality, beans zinc concentration, potassium leaching, electrical conductivity, color index, total tritable acidity, pH, chlorogenic acids contents and ferric-reducing antioxidant activity of beans were evaluated. Zinc positively affected quality of coffee beans, which presented lower percentage of medium and small beans, lower berry borer incidence, lower potassium leaching and electrical conductivity, higher contents of zinc and chlorogenic acids and higher antioxidant activity in comparison with control beans.
Resumo:
Besides fixing N2, some diazotrophic bacteria or diazotrophs, also synthesize organic acids and are able to solubilize rock phosphates, increasing the availability of P for plants. The application of these bacteria to pineapple leaf axils in combination with rock phosphate could increase N and P availability for the crop, due to the bacterial activity of biological nitrogen fixation and phosphate solubilization. The objectives of this study were: (i) to select and characterize diazotrophs able to solubilize phosphates in vitro and (ii) evaluate the initial performance of the pineapple cultivars Imperial and Pérola in response to inoculation with selected bacteria in combination with rock phosphate. The experiments were conducted at Universidade Estadual do Norte Fluminense Darcy Ribeiro, in 2009. In the treatments with bacteria the leaf contents of N, P and K were higher than those of the controls, followed by an increase in plant growth. These results indicate that the combined application of diazotrophic phosphate-solubilizing bacteria Burkholderia together with Araxá rock phosphate can be used to improve the initial performance of pineapple slips.
Resumo:
The objective of this study was to evaluate yield components, leaf nitrogen content and grain yield in corn as affected by row spacing, plant density and nitrogen topdressing. The experiment was conducted with the single-cross hybrid AG 8021, in the municipality of Toledo-PR, in an Oxisoil under no-tillage system, in the crop year 2005/ 2006. The experiment was arranged in a randomized block design and treatments in split-split-plots, with four replications. The two row spacings (0.45 and 0.90 m) were allocated in the main plots, the two plant densities (60,000 and 80,000 plants ha-1) were allocated in the subplots and the three nitrogen rates (80, 100, 120 and 140 kg ha-1 N) were allocated in the sub-subplots. Topdress nitrogen was applied using urea as N source. The rise of the plant population from 60,000 to 80,000 plants ha-1 and the application of topdress nitrogen resulted in increased production components. The application of topdress fertilization provided increase in leaf N content and grain yield for the spacings 0.45 m and 0.90 m. Yield was higher in the spacing 0.45 m than 0.90 m. Yield was higher with 60,000 plants than with 80,000 plants at 0.90 m, while at 0.45 m there was no difference in relation to the plant density.
Resumo:
ABSTRACT The objective of this study was to evaluate the effect of growth reducer and nitrogen fertilization on morphological variables, SPAD index, radiation interception, and grain yield of three cultivars of wheat. The experimental design was a randomized block in factorial scheme 3x5x2, with three cultivars (Mestre, Iguaçú and Itaipú), five nitrogen doses (0, 40, 80, 120, 160 Kg ha-1), and application or no application of a growth reducer, with three replications. The following characteristics were evaluated: plant height, SPAD index, leaf area index (LAI), Global Radiation Interception (GRI) and grain yield. The Tukey test (p < 0.05) was used for the comparison between the means of cultivar and growth reducer factors, and for a regression analysis to evaluate N levels. Increasing the dose of nitrogen promotes an increase in LAI of plants of wheat crops differently among cultivars, which leads to a greater degree of global radiation interception. At doses higher or equal to 120 Kg ha-1 of nitrogen, there are significant differences in grain yield between treatments with and without the application of the growth reducer. The significant interaction between growth reducer and nitrogen dose, showed that applications of growth reducer increase the GRI at doses above and below 80 Kg ha-1 of nitrogen. Nitrogen rates of 138 and 109 Kg ha-1 are responsible for maximum grain yields of wheat, which is 4235 and 3787 Kg ha-1 with and without the use of growth reducer, respectively.
Resumo:
ABSTRACT The analytical determination of nutrient levels in recently mature leaves in order to diagnose nutritional status is based on the fact that leaves are metabolically active and more sensitive to variation in nutrients of the soil. In most of cases, there is a direct well known between foliar content and the development and yield of the plant. However, for a more accurate interpretation, it is essential to establish the index leaf. There are few published studies about Jatropha with contrasting results. In order to establish the index leaf, in adult plants, the macronutrient levels were evaluated in samples collected in experimental plots, in which doses of nitrogen and phosphorus were applied, in two parts of the floral branches (in the top and in the middle thirds); and in three positions of leaves of the floral branch (between the 1st and 3rd, 6th and 8th, and 13th and 15th leaves below the inflorescence). The location of the leaf on the plant significantly affects nutrient contents. Nitrogen, phosphorus, potassium and sulfur tend to have higher concentration in young tissues. Calcium and magnesium showed higher levels in the basal leaves of floral branches. Samples collected in the top third of plants (between the 6th and 15th leaves of the floral branch) are more sensitive to variations of nitrogen and phosphorus fertilization. Therefore, we indicate the 6th to 15th leaves of the top third plants as index leaves estimate nutritional status of Jatropha.
Resumo:
ABSTRACT Sorghum arundinaceum (Desv.) Stapf is a weed that belongs to the Poaceae family and is widespread throughout Brazil. Despite the frequent occurrence, infesting cultivated areas, there is little research concerning the biology and physiology of this species. The objective of this research was to evaluate the growth, carbon partitioning and physiological characteristics of the weed Sorghum arundinaceum in greenhouse. Plants were collected at regular intervals of seven days, from 22 to 113 days after transplanting (DAT). In each sample, we determined plant height, root volume, leaf area and dry matter, and subsequently we perfomed the growth analysis, we have determined the dry matter partitioning among organs, the accumulation of dry matter, the specific leaf area, the relative growth rate and leaf weight ratio. At 36, 78 and 113 DAT, the photosynthetic and transpiration rates, stomatal conductance, CO2 concentration and chlorophyll fluorescence were evaluated. The Sorghum arundinaceum reached 1.91 in height, with slow initial growth and allocated much of the biomass in the roots. The photosynthetic rate and the maximum quantum yield of FSII are similar throughout the growth cycle. At maturity the Sorghum arundinaceum presents higher values of transpiration rate, stomatal conductance and non-photochemical quenching coefficient (NPQ).