88 resultados para Fallopian Tubes
Resumo:
Landfill gas emissions are one of the main sources of anthropogenic methane (CH4), a major greenhouse gas. In this paper, an economically attractive alternative to minimize greenhouse gas emissions from municipal solid waste landfills was sought. This alternative consists in special biofilters as landfill covers with oxidative capacity in the presence of CH4. To improve the quality/cost ratio of the project, compost was chosen as one of the cover substrates and soil (Typic red yellow-silt-clay Podzolic) as the other. The performance of four substrates was studied in laboratory experiments: municipal solid waste (MSW) compost, soil, and two soil-compost at different proportions. This study aimed to evaluate the suitability and environmental compatibility as a means of CH4 oxidation in biofilters. Four biofilters were constructed in 60 cm PVC tubes with an internal diameter of 10 cm. Each filter contained 2.3 L of oxidizing substrate at the beginning of the experiment. The gas used was a mixture of CH4 and air introduced at the bottom of each biofilter, at a flow of 150 mL min-1, by a flow meter. One hundred days after the beginning of the experiment, the best biofilter was the MSW compost with an oxidation rate of 990 g m-3 day-1 , corresponding to an efficiency of 44 %. It can be concluded that the four substrates studied have satisfactory oxidative capacity, and the substrates can be used advantageously as cover substrate of MSW landfills.
Resumo:
This study aimed to genetically characterize four new Rhizobium strains, and to evaluate their nodulation and fixation capacity compared to commercial strains and to native rhizobia population of a Brazilian Rhodic Hapludox. Two experiments were carried out in randomized blocks design, under greenhouse conditions, in 2007. In the first experiment, the nodulation and nitrogen fixation capacity of new strains were evaluated, in comparison to the commercial strains CIAT-899 and PRF-81 and to native soil population. It was carried out in plastic tubes filled with vermiculite. DNA extractions and PCR sequencing of the intergenic space were made from the isolated pure colonies, in order to genetically characterize the strains and the native rhizobia population. In the second experiment, the nodulation and productivity of common beans Perola cultivar were determined, with the use of evaluated strains, alone or in mixture with PRF-81 strain. It was carried out in pots filled with soil. The native soil population was identified as Rhizobium sp. and was inefficient in nitrogen fixation. Three different Rhizobium species were found among the four new strains. The LBMP-4BR and LBMP-12BR new strains are among the ones with greatest nodulation and fixation capacity and exhibit differential responses when mixed to PRF-81.
Resumo:
Micro, macro and mesofauna in the soil often respond to fluctuating environmental conditions, resulting in changes of abundance and community structure. Effects of changing soil parameters are normally determined with samples taken in the field and brought to the laboratory, i.e. where natural environmental conditions may not apply. We devised a method (STAFD - soil tubes for artificial flood and drought), which simulates the hydrological state of soil in situ using implanted cores. Control tubes were compared with treatment tubes in which floods of 15, 30, 60 and 90 days, and droughts of 60, 90 and 120 days were simulated in the field. Flooding and drought were found to reduce number of individuals in all soil faunal groups, but the response to drought was slower and not in proportion to the expected decrease of the water content. The results of the simulated floods in particular show the value of the STAFD method for the investigation of such extreme events in natural habitats.
Resumo:
The objective of this work was to evaluate the spatial distribution of thrips in different crops, and the correlation between meterological parameters and the flight movements of this pest, using immunomarking. The experiment was conducted in cultivated areas, with tomato (Solanum lycopersicum), potato (Solanum tuberosum), and onion (Allium cepa); and non-cultivated areas, with weedy plants. The areas with tomato (100 days), potato (20 days), and weeds were sprayed with casein, albumin, and soy milk, respectively, to mark adult thrips; however, the areas with onion (50 days) and tomato (10 days) were not sprayed. Thrips were captured with georeferenced blue sticky traps, transferred into tubes, and identified by treatment area with the Elisa test. The dependence between the samples and the capture distance was determined using geostatistics. Meteorlogical parameters were correlated with thrips density in each area. The three protein types used for immunomarking were detected in different proportions in the thrips. There was a correlation between casein-marked thrips and wind speed. The thrips flew a maximum distance of 3.5 km and dispersed from the older (tomato) to the younger crops (potato). The immunomarking method is efficient to mark large quantities of thrips.
Resumo:
The sublethal effect of extracts of Azadirachta indica on Ceratitis capitata was evaluated. Two pairs of flies were treated in plastic tubes with cotton placed in plastic cages. An artificial diet (hydrolyzed protein + sugar) was provided ad libitum. The extracts affected significantly the longevity of C. capitata. The pre-oviposition period were not significantly affected by the extracts. The A. indica branches extracted with dichloromethane (888 ppm) affected significantly the fecundity and fertility, reducing the number of eggs laid to approximately 80 % and the egg hatching by 30 % at the 8th day. Therefore, the neem branches extracted with dichloromethane affected the reproduction of C. capitata.
Resumo:
The study assessed growth and physiological parameters of 'Sunrise Golden' and 'Tainung 01' papaya seedlings grown in 280mL plastic tubes and watered using a low-cost automatic irrigation system adjusted to operate at substrate water tension for starting irrigation (STI) of 3.0, 6.0 or 9.0 kPa. The water depths applied by the dripping system and drainage were monitored during germination and seedling growth. Germination, emergence velocity index (EVI), leaf area, plant height, shoot and root dry weight, stomatal conductance, relative water content (RWC) and relative chlorophyll content (RCC) were evaluated. Soil nutrient levels were determined by electrical conductivity (EC). Water use efficiency (WUE) corresponded to the ratio of plant dry mass to depth of water applied. STI settings did not affect papaya germination or EVI. System configuration to 3.0 and 6.0 kPa STI exhibited the highest drainage and lowest EC and RCC, indicating soil nutrient loss and plant nutrient deficiency. Drainage was greater in tubes planted with the 'Tainung 01' variety, which developed smaller root systems and lower stomatal conductance than 'Sunrise Golden' seedlings. The highest values for shoot dry weight and WEU were obtained at 6.0 kPa STI for 'Sunrise Golden' (0.62 g and 0.69 g L-1) and at 9.0 kPa in 'Tainung 01' (0.35 g and 0.82 g L-1). RWC at 9.0 kPa STI was lower than at 3.0 kPa in both varieties. The results indicate that the low-cost technology developed for irrigation automation is promising. Even so, new studies are needed to evaluate low-flow irrigation systems as well as the nutrient and water needs of different papaya varieties.
Resumo:
Selenium is both essential and toxic to man and animals, depending on the concentration and the ingested form. Most fruits and vegetables are poor sources of selenium, but coconut can be a good selenium source. Samples were suspended (1 + 4 v/v) in a mixture of tertiary amines soluble in water (10% v/v CFA-C). This simple sample treatment avoided contamination and decreased the analysis time. The standard additions method was adopted for quantification. The action of the autosampler was improved by the presence of the amines mixture in the suspension. A Varian model AA-800 atomic absorption spectrometer equipped with a graphite furnace and a GTA 100 autosampler was used for selenium determination in coconut water and coconut milk. Background correction was performed by means of the Zeeman effect. Pyrolytically coated graphite tubes were employed. Using Pd as chemical modifier, the pyrolysis and the atomization temperatures were set at 1400 and 2200ºC, respectively. For six samples, the selenium concentration in coconut water varied from 6.5 to 21.0 mug L-1 and in coconut milk from 24.2 to 25.1 mug L-1. The accuracy of the proposed method was evaluated by an addition-recovery experiment and all recovered values are in the 99.5-102.3% range. The main advantage of the proposed method is that it can be directly applied without sample decomposition.
Resumo:
It was evaluated the applicability of Langmuir, Freundlich and Temkin models to copper adsorption in three classes of soils. Fractions of each soil were added to test tubes containing growing concentrations of the metal in solution. The tubes were shaken and the copper concentrations were determined in the extracts by atomic absorption spectrometry (AAS). The models offered a good fit for the experimental data indicating that presence of silicated clay had high influence on copper sorption. The Langmuir isotherm showed high influence of the organic matter in the absorption phenomenon. It was evidenced the importance of further studies related to Temkin model.
Resumo:
This paper focuses: (i) the development of a measurement technique for the determination of atmospheric C2-C6 hydrocarbons with sampling in canisters and analysis by gas chromatography/flame ionisation detector (GC/FID), (ii) the improvement of an existent adsorption-sampling technique with Tenax TA tubes for the determination of C6-C11 hydrocarbons and analysis by GC/FID after thermal desorption and cryogenic concentration, (iii) the identification of compounds present in ambient air by gas chromatography/mass spectrometry (GC/MS) for both canister and Tenax samples, (iv) a program of interlaboratorial comparison for quality control of C2-C11 analyses, and (v) the seasonal characterisation of ambient air C2-C11 hydrocarbons.
Resumo:
Destruction of Padron® (dye and picloram) was evaluated using a photoreactor and a solar reactor. Photolysis was observed using only a germicide lamp (GL). Black light (BL) and H2O2 (172 mmol L-1) promoted a conversion of 49% and 6% of dye and picloram, respectively. Photocatalytic processes were more efficient using TiO2/GL (96%-dye; 60%-picloram) than TiO2/BL (44%-dye; 40%-picloram). Photolysis using sunlight was not observed during PadronÒ recirculation in the reactor constructed with four borosilicate tubes. Meanwhile, adding H2O2 resulted in 12% conversion of dissolved organic compounds. Finally, the most efficient mineralization (60%) was obtained using the Fenton reaction ( H2O2-176 mmol L-1; FeSO4x6H2O-90 mmol L-1) and sunlight.
Resumo:
Vacuum pumps are very useful in physical, chemical and biological experiments. In this communication it is described the design of a compact and low cost water recirculating system employing a water-jet aspirator pump as the vacuum source. The system requires only a water pump, water-jet aspirator pump, commercial PVC water tubes and a drain connection.
Resumo:
Extraction/concentration is a crucial step for the analysis of organic compounds at trace level concentrations and dispersed in complex matrices. Solid-phase extraction (SPE) is one of the techniques used for this purpose. In this work, a low cost apparatus for SPE was developed that uses nitrogen under positive pressure and ensures the maintenance of the sample flow, while also allows the simultaneous extraction of different samples without cross-contamination and sample contact with plastic materials. For the system set up, easily accessible materials were used such as hypodermic needles, stainless steel tubes, rubber stoppers, and 3-way valves from serum delivery apparatus.
Resumo:
This paper describes the evaluation of a method for determination of Cd and Pb in xanthan gum samples by Graphite Furnace Atomic Absorption Spectrometry (GF AAS) using NH4H2PO4 as the chemical modifier. The sample preparation was performed using a reflux system adapted in the digestion tubes. With this system it was possible to increase the temperature of the digester block above the boiling point of the reaction medium, preventing loss of analyte and excessive evaporation of acids during heating. Samples were digested with HNO3 for 3 h in a digester block at 220 ºC. The limits of detection for Cd and Pb were 2.2 and 33.8 ng g-1, respectively. The RSDs for both analytes were, on average, lower than 5.0% and accuracy was verified by recovery tests, yielding values in the 83-100% range.
Outplanting performace of eucalyptus clonal cuttings produced in different containers and substrates
Resumo:
The objective of this work was to evaluate the outplanting growth of Eucalyptus grandis e E. saligna clones, produced by cuttings in tubes (50cm³) and in pressed blocks (40x60x07cm) - 175 cm³/ seedlings, with different substrates (BT - sugarcane bagasse+sugarcane filter cake; AR - carbonized rice hull + eucalyptus bark; TF - peat). The experiment was arranged in a randomized block design, in a 2x7 factorial (2 clones and 7 treatments), with four replicates with 25 plants. Survival was evaluated two months later. Plant growth was monitored through height and ground level diameter at 20, 40, 60, 120 and 180 days after outplanting. To evaluate the effect of the containers on stem and root biomass in both clones, 180 days after outplanting, the cuttings grown in BT substrate with fertilizer were selected. One plant per plot of each clone, grown in tubes and in pressed blocks was selected. The E. grandis and E. saligna cuttings grown in pressed blocks with sugarcane bagasse+sugarcane filter cake presented greater height and diameter after out planting. Both clones presented larger root, bark, log and branch biomass production in plants produced in the block system. Cuttings of E. saligna grown in pressed blocks showed 80% most wood biomass 180 days after outplanting, compared to that grown in tubes. In E. grandis, the differences in diameter and height, in function of the cutting production system, decreased along time, while in E. saligna these differences increased along the evaluation period.
Resumo:
Subcellular changes are relevant to understand plant organogenesis and embryogenesis in the early stages of cell development. The cytology during cell development in tissue culture is however still poorly characterized. This study aimed to characterize the ultrastructural differences related to callogenesis of anthers, ovaries, leaf and nodal segments of Inga vera Willd. subsp. Affinis (DC.) T.D. Penn. Flower buds, nodal segments and leaves were disinfected and inoculated in test tubes containing MS medium with 3% sucrose and 4.5µM 2.4-D, except for leaf callogenesis, where 9µM of this auxin was used, and for the callogenesis of anthers and ovaries, where the culture medium was enriched with 0.25% activated charcoal and 90µM PVP. After 45 days in culture medium, the anther, ovary, leaf and nodal segment calli were fixed in Karnovisky and prepared for visualization by scanning and transmission electron microscopy. Ultrastructural differences were observed among the callus cells of anthers, ovaries, segments and leaves. There was no evidence of somatic embryo formation in the anther, leaf and nodal segment calli, in spite of some embryogenic characteristics in the cells. The ovary calli, with indications of embryo formation, seem to be the most responsive explant source for embryogenesis.