96 resultados para Dental Pulp Solubility
Resumo:
The present study aims to compare yield and quality of pequi pulp oil when applying two distinct processes: in the first, pulp drying in a tray dryer at 60ºC was combined with enzymatic treatment and pressing to oil extraction; in the second, a simple process was carried out by combining sun-drying pulp and pressing. In this study, raw pequi fruits were collected in Mato Grosso State, Brazil. The fruits were autoclaved at 121ºC and stored under refrigeration. An enzymatic extract with pectinase and CMCase activities was used for hydrolysis of pequi pulp, prior to oil extraction. The oil extractions were carried out by hydraulic pressing, with or without enzymatic incubation. The oil content in the pequi pulp (45% w/w) and the physicochemical characteristic of the oil was determined according to standard analytical methods. Free fatty acids, peroxide values, iodine and saponification indices were respectively 1.46 mgKOH/g, 2.98 meq/kg, 49.13 and 189.40. The acidity and peroxide values were lower than the obtained values in commercial oil samples, respectively 2.48 mgKOH/g and 5.22 meq/kg. Aqueous extraction has presented lower efficiency and higher oxidation of unsaturated fatty acids. On the other hand, pequi pulp pressing at room temperature has produced better quality oil. However its efficiency is still smaller than the combined enzymatic treatment and pressing process. This combined process promotes cellular wall hydrolysis and pulp viscosity reduction, contributing to at least 20% of oil yield increase by pressing.
Resumo:
Mauritia vinifera (buriti) is a palm tree that grows wild in different areas of Brazil, particularly in the Amazonian region. The buriti oil is rich in carotenoids, especially in β-carotene. The growing interest in other natural sources of β-carotene has stimulated the industrial use of buriti as a raw material for pulp oil extraction. Most processes are based on the conventional technologies, involving drying and pressing the pulp for oil recovery and further separation of carotenoids in a liquid phase using organics solvents. In the present work, the ethanol-based process was evaluated for simultaneous carotenoids recovering and fractionating from buriti pulp. The raw material and ethanol, 1:4 ratio, were placed in an erlenmeyer flask and maintained at 30rpm for 1 hour in a temperature-controlled bath at 65ºC. The mixture was filtered under vacuum and cooling at 10ºC to allow for the separation of the solvent in two phases. Carotenoids composition, determined by HPLC, has indicated a β-carotene concentration about 12 times greater in the lower phase than in the upper phase. The profile of the carotenoids in the denser phase is quite similar to that of raw buriti oil, and the concentration of total carotenoids is 40% higher than that of the original raw oil, making the ethanol-based process particularly attractive for industrial applications.
Resumo:
Gelled aspect in papaya fruit is typically confused with premature ripening. This research reports the characterization of this physiological disorder in the pulp of papaya fruit by measuring electrolyte leakage, Pi content, lipid peroxidation, pulp firmness, mineral contents (Ca, Mg and K - in pulp and seed tissues), and histological analysis of pulp tissue. The results showed that the gelled aspect of the papaya fruit pulp is not associated with tissue premature ripening. Data indicate a reduction of the vacuole water intake as the principal cause of the loss of cellular turgor; while the waterlogged aspect of the tissue may be due to water accumulation in the apoplast.
Resumo:
Eighteen circular blocks of resins cured either by a LED or a halogen lamp (20, 40 and 60 s), had their top (T) and bottom (B) surfaces studied using a FT-Raman spectrometer. Systematic changes in the intensity of the methacrylate C=C stretching mode at 1638 cm-1 as a function of exposure duration were observed. The calculated degree of conversion (DC) ranged from 45.0% (B) to 52.0% (T) and from 49.0% (B) to 55.0% (T) for the LED and halogen lamp, respectively. LED and halogen light produced similar DC values with 40 and 60 s of irradiation.
Resumo:
The caffeine solubility in supercritical CO2 was studied by assessing the effects of pressure and temperature on the extraction of green coffee oil (GCO). The Peng-Robinson¹ equation of state was used to correlate the solubility of caffeine with a thermodynamic model and two mixing rules were evaluated: the classical mixing rule of van der Waals with two adjustable parameters (PR-VDW) and a density dependent one, proposed by Mohamed and Holder² with two (PR-MH, two parameters adjusted to the attractive term) and three (PR-MH3 two parameters adjusted to the attractive and one to the repulsive term) adjustable parameters. The best results were obtained with the mixing rule of Mohamed and Holder² with three parameters.
Resumo:
Our previous paper showed fragmentary evidence that pulp brightness reversion may be negatively affected by its organically bound chlorine (OX) content. A thorough investigation on eucalyptus kraft pulp led to the conclusion that OX increases reversion of certain pulps but this trend is not universal. Alkaline bleaching stages decrease reversion regardless of pulp OX content. Pulps bleached with high temperature chlorine dioxide revert less than those bleached with conventional chlorine dioxide in sequences ending with a chlorine dioxide stage but similarly in sequences ending with a final peroxide stage. The use of secondary condensate for pulp washing decreases reversion.
Resumo:
Pequi (Caryocar brasiliense Camb.), a typical fruit of Brazilian Cerrado, is well known in regional cookery and used in folk medicine to treat various illnesses. Mass spectrometry and chromatographic methods have identified the organic composition of pequi fruit pulp; however, NMR spectroscopy is used for the first time to characterize the nutritional components of organic and aqueous-ethanolic extracts. This spectroscopic technique determined the triacylglycerols in the pequi organic fraction, which is constituted mainly by oleate and palmitate esters, and detected the carbohydrate mixtures as the major components of aqueous and ethanolic fractions, respectively. In this study, presence of phenolic compounds was only evidenced in the ethanolic fraction.
Resumo:
Pulp hemicelluloses can be extracted with NaOH and quantified by colorimetric and gravimetric techniques. However the most usual methods to measure eucalyptus pulp hemicelluloses have been through the pentosan method or through xylan analyses by GC or HPLC techniques. In this study a comparison was made between the more traditional methods and indirect method of NaOH 5% extraction followed by colorimetric analyses. It was observed that the content of NaOH 5% extract correlates very well with pulp xylan content and reasonably well with the pentosan content. It is concluded that the 5% NaOH solubility method can be used in replacement of the other two, since it is faster, simpler and less costly to carry out than the others.
Resumo:
By using the van't Hoff and Gibbs equations the apparent thermodynamic functions Gibbs energy, enthalpy, and entropy of solution for sodium naproxen in ethanol + water cosolvent mixtures, were evaluated from solubility data determined at temperatures from (278.15 to 308.15) K. The drug solubility was greatest in neat water and lowest in neat ethanol at all the temperatures studied. By means of non-linear enthalpy-entropy compensation analysis, it follows that the dissolution process of this drug in ethanol-rich mixtures is entropy-driven, whereas, in water-rich mixtures the process is enthalpy-driven.
Resumo:
This study describes unpublished research on improving the solubility of benznidazole by the formation of an inclusion complex. The cyclodextrins selected were αCD, βCD, γCD, HPβCD, RMβCD and SBβCD. All complexes were obtained in solution, presenting 1:1 stoichiometry according to the phase solubility diagram. The highest association constants were obtained with RMβCD and SBβCD, being selected for attainment of solid state complexes. These were characterized using XRD, SEM and dissolution test. The data obtained suggest the formation of complexes and indicate that these may provide a promising alternative way of developing solid doses of drug with suitable biopharmaceutical properties.
Resumo:
Extended Hildebrand Solubility Approach (EHSA) was successfully applied to evaluate the solubility of Indomethacin in 1,4-dioxane + water mixtures at 298.15 K. An acceptable correlation-performance of EHSA was found by using a regular polynomial model in order four of the W interaction parameter vs. solubility parameter of the mixtures (overall deviation was 8.9%). Although the mean deviation obtained was similar to that obtained directly by means of an empiric regression of the experimental solubility vs. mixtures solubility parameters, the advantages of EHSA are evident because it requires physicochemical properties easily available for drugs.
Resumo:
By using the van't Hoff and Gibbs equations the apparent thermodynamic functions Gibbs energy, enthalpy, and entropy of solution for triclocarban in ethanol + propylene glycol mixtures were evaluated from solubility data determined at temperatures from (293.15 to 313.15) K. The drug solubility was greatest in the mixture with 0.60 in mass fraction of ethanol and lowest in neat propylene glycol at almost all the temperatures studied. Non-linear enthalpy-entropy compensation is found indicating apparently different mechanisms of the solution process according to the mixtures composition.
Resumo:
Edibles films are an alternative to synthetic materials used for packing food products. Barbados cherry is rich in vitamin C and carotenoids. The aim of this study was to characterize and develop films by casting from cassava starch, lyophilized Barbados cherry pulp and glycerol. The films were characterized with respect to thickness, water vapor permeability (WVP), water solubility, vitamin C, carotene and mechanical properties. The interaction of pulp and glycerol reduced film thickness. An increase in pulp concentration up to 60% increased WVP but beyond this concentration reduced both WVP and solubility leading to an increased level of vitamin C and β carotene in the films.
Resumo:
It is well known that pH is an important parameter for controlling the eucalyptus pulp bleaching when using the final chlorine dioxide stage, since it affects the effectiveness of the process. Recommendations found in the literature for operating are in the 3.5 to 4.0 range. However, in this paper it was shown that final chlorine dioxide has better performance, with significant brightness gain while also preserving pulp quality, when it is operated at near neutral pH. This result can be explained by the generation of sodium bicarbonate in situ upon adding carbon dioxide at this stage.
Resumo:
The use of 12-year-old Pinus tecunumanii (Eguiluz e Perry) grown in Colombia was evaluated for bleached kraft pulp production. Kraft pulps of kappa number 30 ± 1 were produced, and oxygen delignified and bleached to 90% ISO with ECF processes. The bleached pulps produced under optimum conditions were evaluated with regard to their strength properties. Pinus tecunumanii wood required low effective alkali charge to reach the desired kappa number and the unbleached pulp showed high oxygen delignification efficiency and bleachability when a OD(EO)DED sequence was used. The bleached pulps presented good physical-mechanical properties, which are comparable to those obtained with more traditional pines such as Pinus taeda and Pinus radiata. The results demonstrate that this tropical pine species is a suitable raw material for bleached kraft pulp production