90 resultados para DISULFIDE BONDS
Resumo:
This study represents an integrated approach towards understanding the electronic and structural aspects of 2-benzylamino-1,4-naphthalenedione, a representative 2-amino-napfthoquinone. To this end, theoretical calculations performed at the B3PW91/6-31+G(d) level of density functional theory, electrochemical and X-ray structural investigation were employed. Two intramolecular H-bonds and other two intermolecular H-bonds were observed, including non-classical interactions. Cyclic voltammogram (CV) and differential pulse voltammetry (DPV) show two pairs of peaks, being each one a monoelectronic process.
Resumo:
This article provides a short review of the chemistry of stannylenes and their derivatives, including the preparation, spectroscopic properties, molecular structure and reactivity of the various species. The organometallic chemistry of Sn(II) is far less explored than that of its much more common Sn(IV) counterpart. Organometallics of main group metals have become increasingly important in recent years, which prompted us to present an overview of the situation regarding the case of Sn(II).
Resumo:
The solubility of sulfides is discussed in this article based on the factors that can influence this property, such as predominant type of chemical bonds and structures formed in many compounds. For soluble sulfides, considerations are made on the thermodynamic parameters and the acid-base equilibrium, since the sulfide anion is extensively hydrolyzed in aqueous solutions. On the other hand, for the insoluble sulfides, the discussion concerned the influence of structural factors that will be determinant for the low solubility.
Resumo:
Docosahexaenoic acid (C22:6, n-3, DHA) is a polyunsaturated fatty acid (PUFA) present in large concentrations in the brain and, due to the presence of six double bonds in its structure, is highly susceptible to oxidation by enzymes and reactive oxygen/nitrogen species. The peroxidation of PUFAs has been implicated in an increasing number of human disorders, including neurodegenerative diseases. Hence, a better understanding of the metabolism pathways of DHA should provide new insights about its role in neurodegenerative diseases. Here we review the main aspects related to DHA metabolism, as well as, the recent findings showing its association with neurodegenerative diseases.
Resumo:
The triterpenoids oleanolic (OA) and ursolic (UA) acids show non-selective antiinflamatory activity in vitro for cyclooxygenase (COX) isoforms. 3D conformations of OA and UA, with three possible orientations (1, 1' and 2) in the active site of isoforms COX, obtained by docking, were submitted to molecular dynamics. The results show that orientation 2 of the OA in COX-2 is more favorable because orientation 1 moved away from the active site. The carboxylate group of OA interact by hydrogen bonds with Ser353 and with Phe357 and Leu359, mediated by water, while hydroxyl in C-3 interact by hydrogen bond, mediated by water, with Tyr385.
Resumo:
This paper presents an IR and Raman experiment executed during the teaching of the course "Chemical Bonds" for undergraduated students of Science and Technology and Chemistry at the Federal University of ABC, in order to facilitate and encourage the teaching and learning of group theory. Some key aspects of this theory are also outlined. We believe that student learning was more significant with the introduction of this experiment, because there was an increase in the discussions level and in the performance during evaluations. This work also proposes a multidisciplinary approach to include the use of quantum chemistry tools.
Resumo:
Epoxidation of soybean oil was investigated using 1-n-butyl-3-methylimidazolium hexafluorophosphate [bmim][PF6] ionic liquid as biphasic medium with molybdenum(VI) acetylacetonate complex and tert-butyl hydroperoxide TBHP as oxidizing agent. Reaction conditions were molar ratio TBHP:number of double bonds of oil:catalyst of 100:100:1, reaction temperature of 60 ºC and reaction time between 2 and 24 h. The proposed system showed catalytic activity for epoxidation reactions under tested conditions. Reuse of ionic liquid/catalyst system for epoxidation reactions was also investigated. Evaluation of epoxidation observed in this catalytic system was done by quantitative ¹H NMR data.
Resumo:
In this work, we describe the hydroformylation of methyl oleate catalyzed by several rhodium complexes. Parameters including total pressure, phosphorous/rhodium and CO/H2 ratio, temperature and phosphorous ligands were scanned. Total conversion of the starting double bonds was achieved while maintaining excellent selectivity in aldehydes.
Resumo:
It is through the application of an electronic partition approach called Symmetry-Adapted Perturbation Theory (SAPT) that the nature of hydrogen bonds and van der Waals interactions can be unveiled according to the contribution of electrostatic, charge transfer, exchange repulsion, polarization, and dispersion terms. Among these, electrostatic partition governs the formation of the hydrogen bonds, whose energies are arguably high. However, the weakness of the interaction strength is caused by dispersion forces, whose contribution decisively lead to the stabilization of complexes formed via van der Waals interactions.
Resumo:
Proteases catalyze the hydrolysis of peptide bonds of proteins and peptides to produce smaller peptides and free amino acids. These enzymes are involved in physiologic processes such as blood coagulation and cellular death, and are related to life cycle of several viruses, such as hepatitis C, dengue, and AIDS. These features make most of proteases very important therapeutic targets for new pharmaceutical compounds. The development of peptidemimetics with improved pharmacokinetic properties is driving extensive research in the field of viral protease inhibitors. The present paper aims to highlight the design and synthesis of peptidemimetics that are able to inhibit viral proteases related to hepatitis C, dengue, and AIDS.
Resumo:
This article presents a theoretical study of the molecular properties of trimolecular clusters of CnHm∙∙∙HCN∙∙∙HX formed by the ϖ∙∙∙H and n∙∙∙H hydrogen bonds. The interaction strengths of these interactions are in line with the variations in s-character, and independently, the red-shift rise whether stronger or weaker bound systems are carried out. This behavior was justified via NBO analysis and supported by Bent´s rule, wherein the greater variations in s-character of X are in good agreement with larger red-shifts and vice-versa. To conclude, the refinement of the supermolecule approach and NBO binding energies also corroborate in this regard.
Resumo:
Life on earth depends on the absorption and conversion of solar energy into chemical bonds, i.e. photosynthesis. In this process, sun light is employed to oxidize water into oxygen and reducing equivalents used to produce fuels. In artificial photosynthesis, the goal is to develop relatively simple systems able to mimic photosynthetic organisms and promote solar-to-chemical conversion. The aim of the present review was to describe recent advances in the application of coordination compounds as catalysts in some key reactions for artificial photosynthesis, such as water splitting and CO2 reduction.
Resumo:
In 2002, a review article was published in which molybdenum disulfide properties were discussed. The last sentence of the article read as follows: "Based on that described above, we can conclude that in spite of the vast applications of molybdenum disulfide in several industrial branches, many of the potential applications need to be investigated in the future". Since 2002, novel properties of molybdenum disulfide have been described which promise to revolutionize science. The objective of the present review paper was to provide an overview of the processes of 2H-MoS2 exfoliation and properties of the single layers, reported mainly in the last decade.
Resumo:
Potential energy surface (PES) of cis-trans and trans-trans formic acid dimers were sampled using a stochastic method, and the geometries, energies, and vibrational frequencies were computed at B3LYP/6-311++G(3df,2p) level of theory. The results show that molar free energy of dimerization deviated up to 108.4% when basis set superposition error (BSSE) and zero-point energy (ZPE) were not considered. For cis-trans dimers, C=O and O - H bond weakened, whereas C - O bonds strengthened due to dimerization. Also, trans-trans FA dimers did not show a trend regarding strengthening or weakening of the C=O, O - H and C - O bonds.
Resumo:
This work shows the influence of several reactional parameters for obtaining graphene through successive steps of oxidation and exfoliation of bulk graphite (resulting in graphene oxide), followed by chemical reduction. The results showed that changes in temperature, reaction time, reducing agent and source of primary graphite lead to different surface compositions and stability in dispersion of graphene oxide. Also, the use of different reducing agents promoted different degrees of restoration of C=C bonds in the bidimensional structure of graphene.