62 resultados para Cellular Metabolism
Resumo:
Lipid bodies, inducible lipid-rich cytoplasmic inclusions, are characteristically abundant in cells associated with inflammation, including eosinophils. Here we reviewed the formation and function of lipid bodies in human eosinophils. We now have evidence that the formation of lipid bodies is not attributable to adverse mechanisms, but is centrally mediated by specific signal transduction pathways. Arachidonic acid and other cis fatty acids by an NSAID-inhibitable process, diglycerides, and PAF by a 5-lipoxygenase dependent pathway are potent stimulators of lipid body induction. Lipid body formation develops rapidly by processes that involve PKC, PLC, and de novo mRNA and protein synthesis. These structures clearly serve as repositoires of arachidonyl-phospholipids and are more than inert depots. Specific enzymes, including cytosolic phospholipase A2, MAP kinases, lipoxygenases and cyclooxygenases, associate with lipid bodies. Lipid bodies appear to be dynamic, organelle-like structures involved in intracellular pathways of lipid mobilization and metabolism. Indeed, increases in lipid body numbers correlated with enhanced production of both lipoxygenase- and cyclooxygenase-derived eicosanoids. We hypothesize that lipid bodies are distinct inducible sites for generating eicosanoids as paracrine mediators with varied activities in inflammation. The capacity of lipid body formation to be specifically and rapidly induced in leukocytes enhances eicosanoid mediator formation, and conversely pharmacologic inhibition of lipid body induction represents a potential novel and specific target for anti-inflammatory therapy.
Resumo:
Streptomyces alboniger ATCC 12461 grown in brain heart infusion (BHI) medium produced two extracellular serine-proteinases, denoted SP I and SP II, which were purified by ammonium sulfate precipitation and aprotinin-agarose affinity chromatography. SP I was purified 88,9-fold and SP II 66,7- fold, with 33.4% and 10.4% yield, respectively. The optimum pH for the proteinases activity, using a-N-p-tosyl-L-arginine-methyl ester (TAME) as substrate, was 9-10 and the optimum temperature was 37ºC. The proteolytic activity of SP I and SP II was inhibited by aprotinin and SP I was partially inhibited by leupeptin, both serine-proteinase inhibitors. S. alboniger growth in BHI-liquid medium decreased when 5 mg/ml, 10 mg/ml of aprotinin was used, being completely inhibited with 20 mg/ml and 40 mg/ml. At the ultrastructural level, aprotinin-treated S. alboniger cells showed swelling of the bacterial body and condensation of the genetic material, probably related to the inhibition of its growth.
Resumo:
Since the internal defense system of mollusks consists of cellular and humoral mechanisms, we examined the role of hydrocortisone in mollusks defense cells and the influence of this steroid on the development of Schistosoma mansoni in its intermediary host. Hydrocortisone had an immunosuppressive action in Biomphalaria glabrata, as reflected in the reduced number of defense cells and the altered cell physiology. Histopathological analysis showed that hydrocortisone facilitated the intramolluscan development of S. mansoni, by reducing the extent of the inflammatory response, seen as a greater number of viable sporocysts with no surrounding hemocytes.
Resumo:
The study of the Schistosoma mansoni genome, one of the etiologic agents of human schistosomiasis, is essential for a better understanding of the biology and development of this parasite. In order to get an overview of all S. mansoni catalogued gene sequences, we performed a clustering analysis of the parasite mRNA sequences available in public databases. This was made using softwares PHRAP and CAP3. The consensus sequences, generated after the alignment of cluster constituent sequences, allowed the identification by database homology searches of the most expressed genes in the worm. We analyzed these genes and looked for a correlation between their high expression and parasite metabolism and biology. We observed that the majority of these genes is related to the maintenance of basic cell functions, encoding genes whose products are related to the cytoskeleton, intracellular transport and energy metabolism. Evidences are presented here that genes for aerobic energy metabolism are expressed in all the developmental stages analyzed. Some of the most expressed genes could not be identified by homology searches and may have some specific functions in the parasite.
Resumo:
Reactivity of snails against parasites exhibits a primitive focal reaction, with encapsulation, phagocytosis and destruction of parasite larvae by macrophage-like cells - the hemocytes. This reaction mimics granulomatous inflammation seen in higher animals. However, different from the latter, little is known about the participation of extra-cellular matrix in such snail defense reactions. Normal and Schistosoma mansoni-infected Biomphalaria glabrata of different strains were submitted to cytological, histological, ultrastructural and biochemical methods in order to investigate the behavior of extra-cellular tissues at the site of anti-parasite reactions. In spite of the presence of two cell-types in peripheral hemolymph, only one cell-type was present at the sites of tissue reactions. Although pre-existent collagen and elastic fibers and microfibrils sometimes appeared slightly compressed around focal reactions, no evidences of duplication, synthesis or deposition of connective-tissue extra-cellular components were observed within or around the zones of reactive cell accumulations. Thus, tissue reactions against S. mansoni in the snail B. glabrata appeared exclusively dependent on one specific population of hemocytes.
Resumo:
The metabolism of lipids and carbohydrates related to flight activity in Panstrongylus megistus was investigated. Insects were subjected to different times of flight under laboratory conditions and changes in total lipids, lipophorin density and carbohydrates were followed in the hemolymph. Lipids and glycogen were also assayed in fat body and flight muscle. In resting insects, hemolymph lipids averaged 3.4 mg/ml and significantly increased after 45 min of flight (8.8 mg/ml, P < 0.001). High-density lipophorin was the sole lipoprotein observed in resting animals. A second fraction with lower density corresponding to low-density lipophorin appeared in insects subjected to flight. Particles from both fractions showed significant differences in diacylglycerol content and size. In resting insects, carbohydrate levels averaged 0.52 mg/ml. They sharply declined more than twofold after 15 min of flight, being undetectable in hemolymph of insects flown for 45 min. Lipid and glycogen from fat body and flight muscle decreased significantly after 45 min of flight. Taken together, the results indicate that P. megistus uses carbohydrates during the initiation of the flight after which, switching fuel for flight from carbohydrates to lipids.
Resumo:
In this study we have examined certain aspects of the process of cell invasion and parasitophorous vacuole escape by metacyclic trypomastigotes and extracellular amastigote forms of Trypanosoma cruzi (G strain). Using Vero (and HeLa) cells as targets, we detected differences in the kinetics of vacuole escape by the two forms. Alcalinization of intercellular pH influenced both invasion as well as the escape from the parasitophorous vacuole by metacyclic trypomastigotes, but not the escape kinetics of extracellular amastigotes. We used sialic acid mutants as target cells and observed that the deficiency of this molecule facilitated the escape of both infective forms. Hemolysin activity was only detected in extracellular amastigotes and neither form presented detectable transialidase activity. Invasion of extracellular amastigotes and trypomastigotes in Vero cells was affected in different ways by drugs that interfere with host cell Ca2+ mobilization. These results are in line with previous results that indicate that metacyclic trypomastigotes and extracellular amastigote forms utilize mechanisms with particular features to invade host cells and to escape from their parasitophorous vacuoles.
Resumo:
The increasing number of pertussis cases reported on the last twenty years and the existence of new acellular vaccines reinforce the need of research for experimental models to assure the quality of available pertussis vaccines. In this study, allotments of whole-cell and acellular pertussis vaccines were tested through the Intranasal Challenge Model (INM) using conventional NIH mice. The results have been compared to those achieved by the "Gold standard" Intracerebral Challenge Model (ICM). In contrast to ICM, INM results did not show intralaboratorial variations. Statistical analysis by Anova and Ancova tests revealed that the INM presented reproducibility and allowed identification and separation of different products, including three-component and four-component accellular pertussis vaccines. INM revealed differences between pertussis vaccines. INM provides lower distress to the mice allowing the reduction of mice number including the possibility of using conventional mice (less expensive) under non-aseptic environment. Thus, INM may be used as an alternative method of verifying the consistence of allotment production, including acellular pertussis vaccines.
Resumo:
Host lipids have been implicated in the pathogenesis of Toxoplasma gondiiinfection. To determine if Toxoplasmainfection influences the lipid status in the normal host, we assessed serum lipids of Swiss-Webster mice during infection with the BGD-1 strain (type-2) at a series of time points. Mice were bled at days zero and 42 post-infection, and subgroups were additionally bled on alternating weeks (model 1), or sacrificed at days zero, 14 and 42 (model 2) for the measurement of total cholesterol (Chl), high density lipoproteins (HDL), low density lipoproteins (LDL) and triglycerides and adiponectin. At day 42, brains were harvested for cyst enumeration. A significant decrease (p = 0.02) in HDL and total Chl was first noted in infected vs. control mice at day 14 and persisted to day 42 (p = 0.013). Conversely, LDL was unaltered until day 42, when it increased (p = 0.043). Serum LDL levels at day 42 correlated only with cyst counts of above 300 (found in 44% mice), while the change in HDL between days zero and 42 correlated with both the overall mean cyst count (p = 0.041) and cyst counts above 300 (p = 0.044). Calculated per cyst, this decrease in HDL in individual animals ranged from 0.1-17 µmol/L, with a mean of 2.43 ± 4.14 µmol/L. Serum adiponectin levels remained similar between infected and control mice throughout the experiment.
Resumo:
Perhaps one of the most intriguing aspects of human Chagas disease is the complex network of events that underlie the generation of protective versus pathogenic immune responses during the chronic phase of the disease. While most individuals do not develop patent disease, a large percentage may develop severe forms that eventually lead to death. Although many efforts have been devoted to deciphering these mechanisms, there is still much to be learned before we can fully understand the pathogenesis of Chagas disease. It is clear that the host's immune response is decisive in this process. While characteristics of the parasite influence the immune response, it is becoming evident that the host genetic background plays a fundamental role in the establishment of pathogenic versus protective responses. The involvement of three complex organisms, host, parasite and vector, is certainly one of the key aspects that calls for multidisciplinary approaches towards the understanding of Chagas disease. We believe that now, one hundred years after the discovery of Chagas disease, it is imperative to continue with highly interactive research in order to elucidate the immune response associated with disease evolution, which will be essential in designing prophylactic or therapeutic interventions.
Resumo:
This paper evaluates the alterations in the glycogen content of tissues (digestive gland and cephalopedal mass) and glucose in the haemolymph of Biomphalaria glabrata BH strain infected with Schistosoma mansoni BH strain and exposed to the latex of Euphorbia splendens var. hislopii. A reduction in the glycogen deposits was observed in infected snails exposed and not exposed to latex. However, the exposure to latex caused a greater depletion of the glycogen levels in both sites analysed, especially from the third week onward. The utilisation of latex as a molluscicide to control the population of infected B. glabrata selectively is proposed.
Resumo:
Interleukin (IL)-15 is a pleiotropic cytokine that regulates the proliferation and survival of many cell types. IL-15 is produced by monocytes and macrophages against infectious agents and plays a pivotal role in innate and adaptive immune responses. This study analyzed the effect of IL-15 on fungicidal activity, oxidative metabolism and cytokine production by human monocytes challenged in vitro with Paracoccidioides brasiliensis (Pb18), the agent of paracoccidioidomycosis. Peripheral blood monocytes were pre-incubated with IL-15 and then challenged with Pb18. Fungicidal activity was assessed by viable fungi recovery from cultures after plating on brain-heart infusion-agar. Superoxide anion (O2-), hydrogen peroxide (H2O2), tumour necrosis factor-alpha (TNF-α), IL-6, IL-15 and IL-10 production by monocytes were also determined. IL-15 enhanced fungicidal activity against Pb18 in a dose-dependent pattern. This effect was abrogated by addition of anti-IL-15 monoclonal antibody. A significant stimulatory effect of IL-15 on O2- and H2O2 release suggests that fungicidal activity was dependent on the activation of oxidative metabolism. Pre-treatment of monocytes with IL-15 induced significantly higher levels of TNF-α, IL-10 and IL-15 production by cells challenged with the fungus. These results suggest a modulatory effect of IL-15 on pro and anti-inflammatory cytokine production, oxidative metabolism and fungicidal activity of monocytes during Pb18 infection.
Resumo:
Adjuvants play an important role in vaccine formulations by increasing their immunogenicity. In this study, the phenolic compound-rich J fraction (JFR) of a Brazilian green propolis methanolic extract stimulated cellular and humoral immune responses when co-administered with an inactivated vaccine against swine herpesvirus type 1 (SuHV-1). When compared to control vaccines that used aluminium hydroxide as an adjuvant, the use of 10 mg/dose of JFR significantly increased (p < 0.05) neutralizing antibody titres against SuHV-1, as well as the percentage of protected animals following SuHV-1 challenge (p < 0.01). Furthermore, addition of phenolic compounds potentiated the performance of the control vaccine, leading to increased cellular and humoral immune responses and enhanced protection of animals after SuHV-1 challenge (p < 0.05). Prenylated compounds such as Artepillin C that are found in large quantities in JFR are likely to be the substances that are responsible for the adjuvant activity.
Resumo:
Domestic dogs are considered to be the main reservoirs of zoonotic visceral leishmaniasis. In this work, we evaluated a protocol to induce Leishmania infantum/Leishmania chagasi-specific cellular and humoral immune responses in dogs, which consisted of two injections of Leishmania promastigote lysate followed by a subcutaneous inoculation of viable promastigotes. The primary objective was to establish a canine experimental model to provide positive controls for testing immune responses to Leishmania in laboratory conditions. After inoculation of viable promastigotes, specific proliferative responses of peripheral blood mononuclear cells (PBMCs) to either Leishmania lysate or recombinant proteins, the in vitro production of interferon-γ by antigen-stimulated PBMCs and a significant increase in circulating levels of anti-Leishmania antibodies were observed. The immunized dogs also displayed positive delayed-type hypersensitivity reactions to Leishmania crude antigens and to purified recombinant proteins. An important finding that supports the suitability of the dogs as positive controls is that they remained healthy for the entire observation period, i.e., more than seven years after infection. Following the Leishmania antigen lysate injections, the infection of dogs by the subcutaneous route appears to induce a sustained cellular immune response, leading to an asymptomatic infection. This provides a useful model for both the selection of immunogenic Leishmania antigens and for immunobiological studies on their possible immunoprotective activities.
Resumo:
We assessed fluconazole susceptibility in 52 Candida tropicalis clinical strains using seven antifungal susceptibility methods, including broth microdilution (BMD) [standard M27 A3 (with neutral and acid pH), ATB Fungus 3, Vitek 2 system and flow cytometric analysis] and agar-based methods (disk diffusion and E-test). Trailing growth, detection of cell-associated secreted aspartic proteases (Saps) and morphological and ultrastructural traits of these clinical strains were also examined. The ranges of fluconazole 24 h-minimum inhibitory concentration (MIC) values were similar among all methods. The essential agreement among the methods used for MIC determinations was excellent and all methods categorised all strains as susceptible, except for one strain that showed a minor error. The presence of the trailing effect was assessed by six methods. Trailing positivity was observed for 86.5-100% of the strains. The exception was the BMD-Ac method where trailing growth was not observed. Morphological and ultrastructural alterations were detected in C. tropicalis trailing cells, including mitochondrial swelling and cell walls with irregular shapes. We tested the production of Saps in 13 C. tropicalis strains expressing trailing growth through flow cytometry. Our results showed that all of the C. tropicalis strains up-regulated surface Sap expression after 24 h or 48 h of exposure to fluconazole, which was not observed in untreated yeast strains. We concluded that C. tropicalis strains expressing trailing growth presented some particular features on both biological and ultrastructural levels.