79 resultados para Arbuscular mycorrhizal fungi and Restoration
Resumo:
INTRODUCTION: to evaluated the type histopathological hepatic lesions and opportunistic agents in Brazilian HIV-infected patients. METHODS: we examined 52 percutaneous liver biopsies of 50 HIV-infected patients who had at least two of the following conditions: fever of unknown origin, unexplained severe emaciation, hepatomegaly or abnormal liver chemistry. The specimens were cultured for mycobacteria and fungi and stained by standard procedures. RESULTS: reactive patterns, granulomatous hepatitis and chronic active hepatitis were verified in 28 (54%), 11 (21%) and 8 (15%) of the patients respectively. Opportunistic infections were diagnosed in 18 (36%) patients: mycobacteria in 12 (24%), Cryptococcus neoformans in 5 (10%) patients and mycobacteria and yeast was isolated from the same liver fragment in one patient. CONCLUSIONS: mycobacteriosis was the most common opportunistic infection and liver tissue culture is an important method to detect opportunistic agents, even in the absence of histological lesions.
Resumo:
INTRODUCTION: Fungal infections in human skin, such as sporotrichosis, can occur after fish induced trauma. This work aimed to identify fungi in freshwater fish that are pathogenic to humans. METHODS: Extraction of dental arches from Serrassalmus maculatus (piranha) and Hoplias malabaricus (wolf fish), stings from Pimelodus maculatus (mandis catfish), dorsal fin rays from Plagioscion spp. (corvina) and Tilapia spp., for culture in Mycosel agar. Some cultures were submitted to DNA extraction for molecular identification by sequencing ITS-5.8S rDNA. RESULTS: Cultures identified most yeast as Candida spp., while sequencing also permitted the identification of Phoma spp. and Yarrowia lipolytica. CONCLUSIONS: While the search for S. schenckii was negative, the presence of fungus of the genera Phoma and Candida revealed the pathogenic potential of this infection route. The genus Phoma is involved in certain forms of phaeohyphomycosis, a subcutaneous mycosis caused by dematiaceous fungi, with reports of infections in human organs and systems. Traumatizing structures of some freshwater fish present pathogenic fungi and this may be an important infection route that must be considered in some regions of Brazil, since there are a large number of a fisherman in constant contact with traumatogenic fish.
Resumo:
In an attempt to isolate Paracoccidioides brasiliensis from nature 887 samples of soil from Botucatu, SP, Brazil, were collected cultured in brain heart infusion agar supplemented with dextrose, in potato dextrose agar and in yeast extract starch dextrose agar, all with antibiotics, at 25º and 37ºC. Five thermo-dependent dimorphic fungi morphologically resembling P. brasiliensis were isolated; two from armadillo holes; further studies of the biology, antigenicity and genetic features of the five dimorphic fungi are necessary to clarify their taxonomy and their possible relation to P. brasiliensis. In addition, 98 dematiaceous fungi and 581 different species of Aspergillus spp. were also isolated. Our findings emphasize that armadillos and their environment are associated with thermo-dimorphic fungi and confirm the ubiquity of pathogenic dematiaceous fungi and Aspergillus spp.
Resumo:
In this study it was compared the MAS-100 and the Andersen air samplers' performances and a similar trend in both instruments was observed. It was also evaluated the microbial contamination levels in 3060 samples of offices, hospitals, industries, and shopping centers, in the period of 1998 to 2002, in Rio de Janeiro city. Considering each environment, 94.3 to 99.4% of the samples were the allowed limit in Brazil (750 CFU/m³). The industries' results showed more important similarity among fungi and total heterotrophs distributions, with the majority of the results between zero and 100 CFU/m³. The offices' results showed dispersion around 300 CFU/m³. The hospitals' results presented the same trend, with an average of 200 CFU/m³. Shopping centers' environments showed an average of 300 CFU/m³ for fungi, but presented a larger dispersion pattern for the total heterotrophs, with the highest average (1000 CFU/m³). It was also investigated the correlation of the sampling period with the number of airborne microorganisms and with the environmental parameters (temperature and air humidity) through the principal components analysis. All indoor air samples distributions were very similar. The temperature and air humidity had no significant influence on the samples dispersion patterns.
Resumo:
The present paper discusses mtDNA and taphonomy of human remains from Moa, Beirada, and Zé Espinho sambaquis of Saquarema, state of Rio de Janeiro, Brazil. New human bone dating by 14C-AMS for Moa archeological site (3810+50 BP - GX-31826-AMS) is included. Preservation of microscopic lamellae and DNA is not related to the macroscopic integrity of the bones. Results here suggest that the preservation of amplifiable DNA fragments may have relation to the preservation of the lamellar arrangement as indicated by optical microscopic examination (polarized light). In 13 human bone fragments from Moa, Beirada, and Zé Espinho it was possible to sequence mtDNA from the 3 individuals of Moa, and from 1 of 4 individuals of Beirada, whose bones also show extensive areas with preserved lamellar structures. The 6 human bone fragments of Zé Espinho and 3 of the 4 fragments of Beirada showed extensive destruction of cortical microstructure represented by cavities, intrusive minerals, and agglomerated microscopic bodies of fungi and bacteria; it was not possible to extract mtDNA from these samples. The results support the hypothesis that the preservation of the microscopic osteon organization is a good predictor for DNA preservation. It was also confirmed the C haplogroup antiquity in Brazil.
Resumo:
Alpha 1,2-mannosidases from glycosyl hydrolase family 47 participate in N-glycan biosynthesis. In filamentous fungi and mammalian cells, α1,2-mannosidases are present in the endoplasmic reticulum (ER) and Golgi complex and are required to generate complex N-glycans. However, lower eukaryotes such Saccharomyces cerevisiae contain only one α1,2-mannosidase in the lumen of the ER and synthesise high-mannose N-glycans. Little is known about the N-glycan structure and the enzyme machinery involved in the synthesis of these oligosaccharides in the dimorphic fungus Sporothrix schenckii. Here, a membrane-bound α-mannosidase from S. schenckii was solubilised using a high-temperature procedure and purified by conventional methods of protein isolation. Analytical zymograms revealed a polypeptide of 75 kDa to be responsible for enzyme activity and this purified protein was recognised by anti-α1,2-mannosidase antibodies. The enzyme hydrolysed Man9GlcNAc2 into Man8GlcNAc2 isomer B and was inhibited preferentially by 1-deoxymannojirimycin. This α1,2-mannosidase was localised in the ER, with the catalytic domain within the lumen of this compartment. These properties are consistent with an ER-localised α1,2-mannosidase of glycosyl hydrolase family 47. Our results also suggested that in contrast to other filamentous fungi, S. schenckii lacks Golgi α1,2-mannosidases and therefore, the processing of N-glycans by α1,2-mannosidases is similar to that present in lower eukaryotes.
Resumo:
Lapachol was chemically modified to obtain its thiosemicarbazone and semicarbazone derivatives. These compounds were tested for antimicrobial activity against several bacteria and fungi by the broth microdilution method. The thiosemicarbazone and semicarbazone derivatives of lapachol exhibited antimicrobial activity against the bacteria Enterococcus faecalis and Staphylococcus aureus with minimal inhibitory concentrations (MICs) of 0.05 and 0.10 µmol/mL, respectively. The thiosemicarbazone and semicarbazone derivatives were also active against the pathogenic yeast Cryptococcus gattii (MICs of 0.10 and 0.20 µmol/mL, respectively). In addition, the lapachol thiosemicarbazone derivative was active against 11 clinical isolates of Paracoccidioides brasiliensis, with MICs ranging from 0.01-0.10 µmol/mL. The lapachol-derived thiosemicarbazone was not cytotoxic to normal cells at the concentrations that were active against fungi and bacteria. We synthesised, for the first time, thiosemicarbazone and semicarbazone derivatives of lapachol. The MICs for the lapachol-derived thiosemicarbazone against S. aureus, E. faecalis, C. gattii and several isolates of P. brasiliensis indicated that this compound has the potential to be developed into novel drugs to treat infections caused these microbes.
Resumo:
Studies on microbial activity and biomass in forestry plantations often overlook the role of litter, typically focusing instead on soil nutrient contents to explain plant and microorganism development. However, since the litter is a significant source of recycled nutrients that affect nutrient dynamics in the soil, litter composition may be more strongly correlated with forest growth and development than soil nutrient contents. This study aimed to test this hypothesis by examining correlations between soil C, N, and P; litter C, N, P, lignin content, and polyphenol content; and microbial biomass and activity in pure and mixed second-rotation plantations of Eucalyptus grandis and Acacia mangium before and after senescent leaf drop. The numbers of cultivable fungi and bacteria were also estimated. All properties were correlated with litter C, N, P, lignin and polyphenols, and with soil C and N. We found higher microbial activity (CO2 evolution) in litter than in soil. In the E. grandis monoculture before senescent leaf drop, microbial biomass C was 46 % higher in litter than in soil. After leaf drop, this difference decreased to 16 %. In A. mangium plantations, however, microbial biomass C was lower in litter than in soil both before and after leaf drop. Microbial biomass N of litter was approximately 94 % greater than that of the soil in summer and winter in all plantations. The number of cultivable fungi and bacteria increased after leaf drop, especially so in the litter. Fungi were also more abundant in the E. grandis litter. In general, the A. mangium monoculture was associated with higher levels of litter lignin and N, especially after leaf drop. In contrast, the polyphenol and C levels in E. grandis monoculture litter were higher after leaf drop. These properties were negatively correlated with total soil C and N. Litter in the mixed stands had lower C:N and C:P ratios and higher N, P, and C levels in the microbial biomass. This suggests more effective nutrient cycling in mixed plantations in the long term, greater stimulation of microbial activity in litter and soil, and a more sustainable system in general.
Resumo:
The symbiosis of plants with mycorrhizal fungi represents an alternative to be considered during the processes of revegetation and rehabilitation of arsenic-contaminated soil. The aim of this study was to evaluate under greenhouse conditions the effect of arsenic on the mycorrhizal association of two species of tropical fern (Thelypteris salzmannii and Dicranopteris flexuosa). T. salzmannii had higher rates of colonization and higher density of spores while D. flexuosa showed greater sensitivity to smaller concentrations of arsenic and association with mycorrhizal fungi. Our results indicate that screening and selection of mycorrhizal fungal isolates/species is possible and effective for phytoremediation of arsenic-contaminated soils.
Resumo:
The rice grain is frequently infected by a series of pathogens (fungi) during its storage, producing damages to the economy and health of humans. The aim of this study was to identify the fungal genera present in different rice genotypes and to quantify their variation during storage. Paddy, brown and milled rice fractions of Nutriar, (N) H329-5(H329) and Don Ignacio genotypes were analyzed at 4, 8 and 12 months of storage. Fungi were identified based on their micromorphological characteristics and colonies. The observed genera according to their frequency were: Alternaria, Nigrospora, Epicoccum, Bipolaris, Curvularia, Cladosporium and Fusarium (field fungi) and Penicillium and Aspergillus (storage fungi). The mycobiota composition was different depending on the grain fraction and the period of storage: field fungi were located in the hulls and bran layers, while storage fungi were mainly in the endosperm. The different genotypes showed different susceptibility to contamination.
Resumo:
ABSTRACTSchizolobium parahyba pv. amazonicum (Huber ex Ducke) Barneby (paricá) occurs naturally in the Amazon and is significant commercial importance due to its rapid growth and excellent performance on cropping systems. The aim of this paper was to evaluate a microbial inoculants such as arbuscular mycorrhiza fungi (AMF) and Rhizobium sp. that promote plant growth. The inocula was 10 g of root colonized and spores of Glomus clarum and/or 1 mL of cell suspension (107 CFU/mL) of Rhizobium sp. and/or 100 g of chemical fertilizer NPK 20-05-20 per planting hole. The experimental design was complete randomized blocks with five replications and eight treatments (n = 800). Plant height, stem diameter and plant survival were measured. The results were tested for normality and homogeneity of variances and analyzed by ANOVA and Tukey test (p < 0.05). Rhizobium sp and AM fungi showed no effect on plant growth. Environmental factors probably influenced the effectiveness of symbiosis of both microorganisms and plant growth. The chemical fertilizer increased S. parahyba growth. During the first 120 days plants suffered with drought and frost, and at 180 days plants inoculated with microorganism plus chemical fertilizer showed higher survival when compared with control. The results showed that the microbial inoculants used showed an important role on plant survival after high stress conditions, but not in plant growth. Also was concluded that the planting time should be between November to December to avoid the presence of young plants during winter time that is dry and cold.
Resumo:
The phyllosphere, i.e., the aerial parts of the plant, provides one of the most important niches for microbial colonization. This niche supports the survival and, often, proliferation of microbes such as fungi and bacteria with diverse lifestyles including epiphytes, saprophytes, and pathogens. Although most microbes may complete the life cycle on the leaf surface, pathogens must enter the leaf and multiply aggressively in the leaf interior. Natural surface openings, such as stomata, are important entry sites for bacteria. Stomata are known for their vital role in water transpiration and gas exchange between the plant and the environment that is essential for plant growth. Recent studies have shown that stomata can also play an active role in limiting bacterial invasion of both human and plant pathogenic bacteria as part of the plant innate immune system. As counter-defense, plant pathogens such as Pseudomonas syringae pv tomato (Pst) DC3000 use the virulence factor coronatine to suppress stomate-based defense. A novel and crucial early battleground in host-pathogen interaction in the phyllosphere has been discovered with broad implications in the study of bacterial pathogenesis, host immunity, and molecular ecology of bacterial diseases.
Resumo:
This study was conducted to evaluate the physicochemical and microbiological characteristics of raspberries exposed to different radiation doses. The fruits were harvested in the city of Campestre, MG, packed in polyethylene bags, and transported to the Federal University of Lavras (UFLA), where they were separated into 4 lots. Irradiation was performed at the Center for Development of Nuclear Technology in Belo Horizonte, MG. The doses used were 0 (control), 0.5, 1.0, and 2.0 kGy. After irradiation, the fruits were transported back to UFLA and stored at 1 ºC and 95% relative humidity (RH) for 12 days. The physicochemical analyses for mass loss, total soluble solids, titratable acidity, pH, total soluble sugars, total soluble pectin, firmness, vitamin C content, total antioxidant activity, and total phenolic, and the microbiological assays (coliform at 35 and 45 ºC, psychrotrophic and filamentous fungi and yeasts) were performed after 0, 3, 6, 9, and 12 days of storage. Lower loss of mass and filamentous fungi and yeast count were observed in the irradiated fruits, and 2 kGy was determined as the most effective dose for microbial control, but this irradiation dose also resulted in increased loss of fruit firmness.
Resumo:
Sixty-four isogenic Swiss mice were intradermically inoculated in both hind foot pads. The inocula, consisting of fungal suspensions from biopsies obtained from Jorge Lobos Disease patients, had the total number of fungi and the viability index determined using a Neubauer chamber and the fluorescein diacetate-ethidium bromide technique (FD-EB), respectively. The animals were sacrificed at times ranging from ten days to eighteen months after inoculation. The cellular infiltrate, mainly consisting of macrophages containing fungi, increased progressively up to end of the study; however, no macroscopic alterations were observed in the inoculated feet. After nine months, small numbers of Langhans giant cells started to appear in the infiltrate. A considerable number of fungi was observed at the end of the experimental period, but only a few were viable when stained by the FD-EB technique. This fact suggests that there is a multiplication of fungal cells, which are destroyed by the macrophages but remain in the tissue for a long time due perhaps to the difficulties in their elimination. These findings led us to conclude that in spite of the maintenance of the infection in these animals, Swiss mice cannot be considered an ideal model to study Jorge Lobos Disease. However, the authors call attention to the possibility of other mouse strains being more susceptible to Paracoccidioides loboi.
Resumo:
INTRODUCTION: A contribution to the regional epidemiological profile of the most common fungal agents in Public Health Services in Cuiabá, state of Mato Grosso, including university hospitals and polyclinics. METHODS: Clinical specimens (n = 1,496) from 1,078 patients were collected, submitted to direct mycological exam (potash or stick tape method) and cultured in specific mediums. Dermatophytic and non-dermatophytic agents were identified according to micromorphology (Ridell technique). RESULTS: The majority of the 1,496 specimens were skin (n = 985) and nail exams (n = 472). Of the 800 positive cultures, 246 (30.8%) corresponded to dermatophytes and 336 (42%) to yeasts of the genus Candida, 190 (23.7%) to other yeasts, 27 (3.4%) to non-dermatophytic filamentous fungi and one (0.1%) the agent of subcutaneous mycosis. Lesions considered primary occurred in greater numbers (59.5%) than recurrent lesions (37.4%), with a greater concentration of positivity occurring on the arms and legs. CONCLUSIONS: Comorbidities, allergies and diabetes mellitus were conditions associated with greater positivity in direct mycological exams and cultures. Positive culture was considered a definitive diagnosis of fungal infection and confirmed 47.8% of diagnostic hypotheses.