40 resultados para photon absorption
Resumo:
In Brazil, few research works on mechanisms of weed resistance to glyphosate have been conducted so far. Therefore, this research aimed to study analytical procedures determining the relation between the concentration of plant shikimate after glyphosate application and the plant resistance to this herbicide; and evaluate the glyphosate absorption and translocation into two resistant ® and susceptible (S) horseweed biotypes to glyphosate. Horseweed plants with nine true leaves received glyphosate (720 g a.e. ha-1), and 2, 3, 4, 7 and 10 days after application (DAA) the concentration of shikimic acid was measured by HPLC. In another experiment, plants were treated with radiolabeled glyphosate (14C) (1.456 MBq mmol-1 specific activity) and radioactivity was measured 4, 8, 24, 48 and 72 hours after treatment (HAT) by liquid scintillation spectrometry. The shikimate concentration in plants increased 16,351.14 and 7,892.25 mg kg-1 of dry weight, for R and S plants respectively, at seven DAA. Therefore, the procedure for quantification of shikimic acid was suitable for R and S plants differentiation to glyphosate, indicating that the R population is actually resistant to glyphosate. On average, 98% of glyphosate applied was absorbed by the studied biotypes, at 72 HAT. Around 68% of the absorbed radioactivity remained on the biotypes leaves treated, the S biotype showing the highest translocation. Therefore, the R biotype resistance mechanism studied is associated to the differential translocation.
Resumo:
Lianas are plants that depend on support to reach some appreciable height, and they represent an important structural component of tropical forests. Although they predominate in clearings and gaps, some species survive in the understory. Changes in irradiance between these environments can affect leaf morphology and absorption of photosynthetic active radiation (PAR). We had examined the effects of different light regimes on leaf optical properties, chlorophyll content, specific leaf area, and leaf surface morphology in young seedlings of Canavalia parviflora Benth. (Fabaceae) and Gouania virgata Reissk (Rhamnaceae). The seedlings were distributed on workbenches covered by different layers of neutral shade netting, thus creating three levels of light intensity corresponding to about 40%, 10% and 1.5% of solar irradiance. Plants growing in full sun were used as a control. Both species exhibited an increase in reflectance in full sun and alterations in leaf morphology. Reduction in irradiance induced an increase in absorptance (decrease in reflectance and transmittance) in C. parviflora leaves in the green due to higher chlorophyll content. In G. virgata the spectral leaf changes were less observable. However, the efficiency of absorption was more pronounced in G. virgata than in C. parviflora leaves under 40%, 10% and 1.5% photon flux density (PFD). The greater efficiency of absorption in G. virgata was due to a larger specific leaf area (SLA) under these conditions. The adjustments in leaf optical properties can aid these species in overall carbon gain under limited light conditions.
Resumo:
In tumor-bearing rats, most of the serum amino acids are used for synthesis and oxidation processes by the neoplastic tissue. In the present study, the effect of Walker 256 carcinoma growth on the intestinal absorption of leucine, methionine and glucose was investigated in newly weaned and mature rats. Food intake and carcass weight were decreased in newly weaned (NT) and mature (MT) rats bearing Walker 256 tumor in comparison with control animals (NC and MC). The tumor/carcass weight ratio was higher in NT than in MT rats, whereas nitrogen balance was significantly decreased in both as compared to control animals. Glucose absorption was significantly reduced in MT rats (MT = 47.3 ± 4.9 vs MC = 99.8 ± 5.3 nmol min-1 cm-1, Kruskal-Wallis test, P<0.05) but this fact did not hamper the evolution of cancer. There was a significant increase in methionine absorption in both groups (NT = 4.2 ± 0.3 and MT = 2.0 ± 0.1 vs NC = 3.7 ± 0.1 and MC = 1.2 ± 0.2 nmol min-1 cm-1, Kruskal-Wallis test, P<0.05), whereas leucine absorption was increased only in young tumor-bearing rats (NT = 8.6 ± 0.2 vs NC = 7.7 ± 0.4 nmol min-1 cm-1, Kruskal-Wallis test, P<0.05), suggesting that these metabolites are being used for synthesis and oxidation processes by the neoplastic cells, which might ensure their rapid proliferation especially in NT rats.
Resumo:
The objective of the present study was to identify the single photon emission computed tomography (SPECT) and magnetic resonance (MR) findings in juvenile systemic lupus erythematosus (JSLE) patients with CNS involvement and to try to correlate them with neurological clinical history data and neurological clinical examination. Nineteen patients with JSLE (16 girls and 3 boys, mean age at onset 9.2 years) were submitted to neurological examination, electroencephalography, cerebrospinal fluid analysis, SPECT and MR. All the evaluations were made separately within a period of 15 days. SPECT and MR findings were analyzed independently by two radiologists. Electroencephalography and cerebrospinal fluid analysis revealed no relevant alterations. Ten of 19 patients (53%) presented neurological abnormalities including present or past neurological clinical history (8/19, 42%), abnormal neurological clinical examination (5/19, 26%), and abnormal SPECT or MR (8/19, 42% and 3/19, 16%, respectively). The most common changes in SPECT were cerebral hypoperfusion and heterogeneous distribution of blood flow. The most common abnormalities in MR were leukomalacia and diffuse alterations of white matter. There was a correlation between SPECT and MR (P<0.05). We conclude that SPECT and MR are complementary and useful exams in the evaluation of neurological involvement of lupus.
Resumo:
Shiga toxin (Stx)-producing Escherichia coli (STEC) colonizes the large intestine causing a spectrum of disorders, including watery diarrhea, bloody diarrhea (hemorrhagic colitis), and hemolytic-uremic syndrome. It is estimated that hemolytic-uremic syndrome is the most common cause of acute renal failure in infants in Argentina. Stx is a multimeric toxin composed of one A subunit and five B subunits. In this study we demonstrate that the Stx2 B subunit inhibits the water absorption (Jw) across the human and rat colonic mucosa without altering the electrical parameters measured as transepithelial potential difference and short circuit current. The time-course Jw inhibition by 400 ng/ml purified Stx2 B subunit was similar to that obtained using 12 ng/ml Stx2 holotoxin suggesting that both, A and B subunits of Stx2 contributed to inhibit the Jw. Moreover, non-hemorrhagic fluid accumulation was observed in rat colon loops after 16 h of treatment with 3 and 30 ng/ml Stx2 B subunit. These changes indicate that Stx2 B subunit induces fluid accumulation independently of A subunit activity by altering the usual balance of intestinal absorption and secretion toward net secretion. In conclusion, our results suggest that the Stx2 B subunit, which is non-toxic for Vero cells, may contribute to the watery diarrhea observed in STEC infection. Further studies will be necessary to determine whether the toxicity of Stx2 B subunit may have pathogenic consequences when it is used as a component in an acellular STEC vaccine or as a vector in cancer vaccines.
Resumo:
The C/T-13910 mutation is the major factor responsible for the persistence of the lactase-phlorizin hydrolase (LCT) gene expression. Mutation G/A-22018 appears to be only in co-segregation with C/T-13910. The objective of the present study was to assess the presence of these two mutations in Brazilian individuals with and without lactose malabsorption diagnosed by the hydrogen breath test (HBT). Ten milk-tolerant and 10 milk-intolerant individuals underwent the HBT after oral ingestion of 50 g lactose (equivalent to 1 L of milk). Analyses for C/T-13910 and G/A-22018 mutations were performed using a PCR-based method. Primers were designed for this study based on the GenBank sequence. The CT/GA, CT/AA, and TT/AA genotypes (lactase persistence) were found in 10 individuals with negative HBT. The CC/GG genotype (lactase non-persistence) was found in 10 individuals, 9 of them with positive HBT results. There was a significant agreement between the presence of mutations in the LCT gene promoter and HBT results (kappa = -0.9, P < 0.001). The CT/AA genotype has not been described previously and seems to be related to lactase persistence. The present study showed a significant agreement between the occurrence of mutations G/A-22018 and C/T-13910 and lactose absorption in Brazilian subjects, suggesting that the molecular test used here could be proposed for the laboratory diagnosis of adult-type primary hypolactasia.
Resumo:
Effective statin therapy is associated with a marked reduction of cardiovascular events. However, the explanation for full benefits obtained for LDL cholesterol targets by combined lipid-lowering therapy is controversial. Our study compared the effects of two equally effective lipid-lowering strategies on markers of cholesterol synthesis and absorption. A prospective, open label, randomized, parallel design study, with blinded endpoints, included 116 subjects. We compared the effects of a 12-week treatment with 40 mg rosuvastatin or the combination of 40 mg simvastatin/10 mg ezetimibe on markers of cholesterol absorption (campesterol and β-sitosterol), synthesis (desmosterol), and their ratios to cholesterol. Both therapies similarly decreased total and LDL cholesterol, triglycerides and apolipoprotein B, and increased apolipoprotein A1 (P < 0.05 vs baseline for all). Simvastatin/ezetimibe increased plasma desmosterol (P = 0.012 vs baseline), and decreased campesterol and β-sitosterol (P < 0.0001 vs baseline for both), with higher desmosterol (P = 0.007) and lower campesterol and β-sitosterol compared to rosuvastatin, (P < 0.0001, for both). In addition, rosuvastatin increased the ratios of these markers to cholesterol (P < 0.002 vs baseline for all), whereas simvastatin/ezetimibe significantly decreased the campesterol/cholesterol ratio (P = 0.008 vs baseline) and tripled the desmosterol/cholesterol ratio (P < 0.0001 vs baseline). The campesterol/cholesterol and β-sitosterol/cholesterol ratios were lower, whereas the desmosterol/cholesterol ratio was higher in patients receiving simvastatin/ezetimibe (P < 0.0001 vs rosuvastatin, for all). Pronounced differences in markers of cholesterol absorption and synthesis were observed between two equally effective lipid-lowering strategies.
Resumo:
The single photon emission microscope (SPEM) is an instrument developed to obtain high spatial resolution single photon emission computed tomography (SPECT) images of small structures inside the mouse brain. SPEM consists of two independent imaging devices, which combine a multipinhole collimator, a high-resolution, thallium-doped cesium iodide [CsI(Tl)] columnar scintillator, a demagnifying/intensifier tube, and an electron-multiplying charge-coupling device (CCD). Collimators have 300- and 450-µm diameter pinholes on tungsten slabs, in hexagonal arrays of 19 and 7 holes. Projection data are acquired in a photon-counting strategy, where CCD frames are stored at 50 frames per second, with a radius of rotation of 35 mm and magnification factor of one. The image reconstruction software tool is based on the maximum likelihood algorithm. Our aim was to evaluate the spatial resolution and sensitivity attainable with the seven-pinhole imaging device, together with the linearity for quantification on the tomographic images, and to test the instrument in obtaining tomographic images of different mouse organs. A spatial resolution better than 500 µm and a sensitivity of 21.6 counts·s-1·MBq-1 were reached, as well as a correlation coefficient between activity and intensity better than 0.99, when imaging 99mTc sources. Images of the thyroid, heart, lungs, and bones of mice were registered using 99mTc-labeled radiopharmaceuticals in times appropriate for routine preclinical experimentation of <1 h per projection data set. Detailed experimental protocols and images of the aforementioned organs are shown. We plan to extend the instrument's field of view to fix larger animals and to combine data from both detectors to reduce the acquisition time or applied activity.
Resumo:
The Graphite furnace atomic absorption spectrometry (GF AAS) was the technique chosen by the inorganic contamination laboratory (INCQ/ FIOCRUZ) to be validated and applied in routine analysis for arsenic detection and quantification. The selectivity, linearity, sensibility, detection, and quantification limits besides accuracy and precision parameters were studied and optimized under Stabilized Temperature Platform Furnace (STPF) conditions. The limit of detection obtained was 0.13 µg.L-1 and the limit of quantification was 1.04 µg.L-1, with an average precision, for total arsenic, less than 15% and an accuracy of 96%. To quantify the chemical species As(III) and As(V), an ion-exchange resin (Dowex 1X8, Cl- form) was used and the physical-chemical parameters were optimized resulting in a recuperation of 98% of As(III) and of 90% of As(V). The method was applied to groundwater, mineral water, and hemodialysis purified water samples. All results obtained were lower than the maximum limit values established by the legal Brazilian regulations, in effect, 50, 10, and 5 µg.L-1 para As total, As(III) e As(V), respectively. All results were statistically evaluated.
Resumo:
The purpose of this study was to investigate and model the water absorption process by corn kernels with different levels of mechanical damage Corn kernels of AG 1510 variety with moisture content of 14.2 (% d.b.) were used. Different mechanical damage levels were indirectly evaluated by electrical conductivity measurements. The absorption process was based on the industrial corn wet milling process, in which the product was soaked with a 0.2% sulfur dioxide (SO2) solution and 0.55% lactic acid (C3H6O3) in distilled water, under controlled temperatures of 40, 50, 60, and 70 ºC and different mechanical damage levels. The Peleg model was used for the analysis and modeling of water absorption process. The conclusion is that the structural changes caused by the mechanical damage to the corn kernels influenced the initial rates of water absorption, which were higher for the most damaged kernels, and they also changed the equilibrium moisture contents of the kernels. The Peleg model was well adjusted to the experimental data presenting satisfactory values for the analyzed statistic parameters for all temperatures regardless of the damage level of the corn kernels.