55 resultados para on-line sample preparation
Resumo:
An automatic dispenser based on a flow-injection system used to introduce sample and analytical solution into an inductively coupled plasma mass spectrometer through a spray chamber is proposed. Analytical curves were constructed after the injection of 20 to 750 µL aliquots of a multielement standard solution (20.0 µg L-1 in Li, Be, Al, V, Cr, Mn, Ni, Co, Cu, Zn, As, Se, Sr, Ag, Cd, Ba, Tl, Pb) and the acquisition of the integrated transient signals. The linear concentration range could be extended to ca. five decades. The performance of the system was checked by analyzing a NIST 1643d reference material. Accuracy could be improved by the proper selection of the injected volume. Besides good precision (r.s.d. < 2%), the results obtained with the proposed procedure were closer to the certified values of the reference material than those obtained by direct aspiration or by injecting 125 µL of several analytical solutions and samples.
Resumo:
The solution fluorescence of N-alkyl-2,3-naphthalimides (1-4) in polar protic and aprotic solvents was compared to the emission from solid samples resulting from the imide complexation with b-cyclodextrin or adsorption on the surface of microcrystalline cellulose. Solid samples of the inclusion complex 2,3-naphthalimides/b-cyclodextrin show maximum for fluorescence emission significantly different to the observed in methanolic solution. Beside this, a clear effect on the alkyl chain length could be observed for these samples which is probably due to differences in probe location inside the cyclodextrin cavity. The constancy for fluorescence quantum yield and fluorescence lifetime for the imides 1 - 4 adsorbed on microcrystalline cellulose suggests that, independently of the polarity of the solvent used for sample preparation, the probe is preferentially located on the cellulose surface. An increase of fluorescence quantum yield and fluorescence lifetime for solid samples, when compared to the values obtained in solution for the different solvents employed in this study (acetonitrile, methanol and water), is fully in accordance with a decrease of the probe mobility due to inclusion in b-cyclodextrin or to adsorption on cellulose.
Resumo:
An on-line electrodissolution procedure implemented in a flow injection system for determination of copper, zinc and lead in brasses alloys by ICP-AES is described. Sample dissolution procedure was carried out by using a PTFE chamber and a DC power supply with constant current. Solid sample was attached to chamber as anode and a gold tubing coupled in the chamber was used as cathode. An electrolytic solution flowing through the gold tubing closed the electric circuit with sample, in order to provide condition for electric dissolution when the DC power supply was switched on. The best results were achieved by using a 1.5 mol l-1 nitric acid solution as electrolyte and a 2.5 A current intensity. The procedure presented a good performance characterized by a relative standard deviation better than < 5% (n=5) and a sample throughput of 180 determinations per hour for Cu, Zn and Pb. Results were in agreement with those obtained by conventional acid dissolution (99% confidence level).
Resumo:
This work discusses sample preparation processes for gas chromatography (GC) based on the technique of extraction through membrane permeation (MPE). The MPE technique may be easily coupled to GC via a relatively simple device, which is a module that holds the membrane and is directly connected to the GC column. The possibility of operational errors due to sample handling is substantially reduced in an MPE-GC system because the sample preparation and the chemical analysis are accomplished as a one-step process. The MPE technique is of relatively wide application as it can be used for aqueous samples, solid samples and gaseous samples. Depending on the type of sample the extraction is performed with the membrane in direct contact with the sample or in contact with its headspace. The MPE-GC technique is very useful in trace analysis, due to the time-dependent enrichment of the analyte. A typical application of MPE-GC is the analysis of VOCs present in water that may be accomplished with detection limits at the low ppb (mugL-1) level.
Resumo:
Different methods have been applied to solve special problems of metal analysis. First, the solid samples of tool steels were analyzed by X-ray fluorescence. Alternatively, an on-line electrodissolution implemented in a flow injection system and conventional dissolution procedure for determination of W, Mo, V and Cr in tool steels by ICP-AES is described. The resulting analyte solutions were compared with conventional dissolution procedure and determination by ICP-AES. The electrolytic procedure presented a good performance characterized by a sample throughput of 164 determinations per hour. Results were in agreement with those obtained by conventional acid dissolution.
Resumo:
The catalytic combustion of methane on alumina supported palladium catalysts was studied. It has been reported that the activity of the catalyst increases with its time on line, despite of an increase of the palladium particle size. However, different preparation, pretreatment and testing conditions can be the reason for the observed different results. An experimental design, which allows to verify the influence of several parameters at the same time with a good statistical quality, was used. A Plackett-Burman design was selected for the screening of the variables which have an effect on the increase of the catalyst activity.
Resumo:
Calculation of uncertainty of results represents the new paradigm in the area of the quality of measurements in laboratories. The guidance on the Expression of Uncertainty in Measurement of the ISO / International Organization for Standardization assumes that the analyst is being asked to give a parameter that characterizes the range of the values that could reasonably be associated with the result of the measurement. In practice, the uncertainty of the analytical result may arise from many possible sources: sampling, sample preparation, matrix effects, equipments, standards and reference materials, among others. This paper suggests a procedure for calculation of uncertainties components of an analytical result due to sample preparation (uncertainty of weights and volumetric equipment) and instrument analytical signal (calibration uncertainty). A numerical example is carefully explained based on measurements obtained for cadmium determination by flame atomic absorption spectrophotometry. Results obtained for components of total uncertainty showed that the main contribution to the analytical result was the calibration procedure.
Resumo:
This paper describes a sequential injection analysis (SIA) set-up coupled to a flame atomic absorption spectrometer (FAAS) to accomplish the determination of low concentrations of copper in drinking waters. Copper is first retained under neutral media in an on-line 29x1.6 mm column filled with poly(ethylenimine) immobilised on silica gel. The retained analyte is then eluted by flowing through the column 250 mL of a nitric acid solution. The selection of 3.85 ml of sample enabled to obtain a detection limit of 0.27 mug/L and a sampling rate of about 24 samples/h. There was a good agrement between the results of 12 samples furnished by the proposed procedure and by electrothermal atomic absorption spectrometry. Repeatability assessment gave a relative standard deviation of 1.3 % after ten replicate analysis of a sample containing about 70 mug/L in copper..
Resumo:
Simultaneous electrolytic deposition is proposed for minimization of Cu2+ and Pb2+ interferences on automated determination of Cd2+ by the Malachite Green-iodide reaction. During electrolysis of sample in a cell with two Pt electrodes and a medium adjusted to 5% (v/v) HNO3 + 0.1% (v/v) H2SO4 + 0.5 mol L-1 NaCl, Cu2+ is deposited as Cu on the cathode, Pb2+ is deposited as PbO2 on the anode while Cd2+ is kept in solution. With 60 s electrolysis time and 0.25 A current, Pb2+ and Cu2+ levels up to 50 and 250 mg L-1 respectively, can be tolerated without interference. With on-line extraction of Cd2+ in anionic resin minicolumn, calibration graph in the 5.00 - 50.0 µg Cd L-1 range is obtained, corresponding to twenty measurements per hour, 0.7 mg Malachite Green and 500 mg KI and 5 mL sample consumed per determination. Results of the determination of Cd in certified reference materials, vegetables and tap water were in agreement with certified values and with those obtained by GFAAS at 95% confidence level. The detection limit is 0.23 µg Cd L-1 and the RSD for typical samples containing 13.0 µg Cd L-1 was 3.85 % (n= 12).
Resumo:
A new solid phase microextraction (SPME) system, known as in-tube SPME, was recently developed using an open tubular fused-silica capilary column, instead of an SPME fiber, as the SPME device. On-line in-tube SPME is usually used in combination with high performance liquid chromatography. Drugs in biological samples are directly extracted and concentrated in the stationary phase of capillary columns by repeated draw/eject cycles of sample solution, and then directly transferred to the liquid chromatographic column. In-tube SPME is suitable for automation. Automated sample handling procedures not only shorten the total analysis time, but also usually provide better accuracy and precision relative to manual techniques. In-tube SPME has been demonstrated to be a very effective and highly sensitive technique to determine drugs in biological samples for various purposes such as therapeutic drug monitoring, clinical toxicology, bioavailability and pharmacokinetics.
Resumo:
Zidovudine (AZT) and stavudine (D4T) are nucleoside reverse transcriptase inhibitors extensively used in human immunodeficiency virus (HIV) infected patients. In order to evaluate the quality of these drugs, two stability indicating HPLC methods were developed. The validated methods were applied in quantitative determination of AZT, D4T and their induced degradation products in capsule preparations. The stability studies were conducted at controlled temperature and relative humidity conditions based on the International Conference on Harmonization stability studies protocol for Zone IV areas. Easy sample preparation and low-cost make these methods especially useful for quality control and stability studies of AZT and D4T in drug products.
Resumo:
This is a review of direct analysis using solid sampling graphite furnace atomic absorption spectrometry. Greater emphasis is dedicated to sample preparation, sample homogeneity, calibration and its application to microanalysis and micro-homogeneity studies. The main advantages and some difficulties related to the applicability of this technique are discussed. A literature search on the application of solid sampling graphite furnace atomic absorption spectrometry in trace element determination in many kinds of samples, including biological, clinical, technological and environmental ones, is also presented.
Resumo:
The analysis of drugs and metabolites in biological fluids usually requires extraction procedures to achieve sample clean-up and analyte preconcentration. Commonly, extraction procedures are performed using liquid-liquid extraction or solid-phase extraction. Nevertheless, these extraction techniques are considered to be time-consuming and require a large amount of organic solvents. On this basis, microextraction techniques have been developed. Among them, liquid-phase microextraction has been standing out. This review describes the liquid-phase microextraction technique based on hollow fibers as a novel and promising alternative in sample preparation prior to chromatographic or electrophoretic analysis. The basic concepts related to this technique and its applicability in extraction of drugs are discussed.
Resumo:
A novel solventless sample preparation, stir-bar sorptive extraction (SBSE), for extraction, and sample enrichment of organic compounds from biological fluids, is described in this manuscript from principle to applications. The SBSE is based on sorptive extraction, whereby the compounds are extracted into a polymer coating, polydimethylsiloxane (PDMS), on a magnetic stirring rod. The extraction is controlled by the partitioning coefficient of drugs between the PDMS and sample matrix, and upon the sample-extraction medium phase ratio. The SBSE technique has been applied successfully, with high sensitivities, to biomedical analysis of volatiles and for semi-volatiles drugs from biological sample, including urine, plasma, and saliva. SBSE combined with in situ derivatization, drugs quite more polar (e.g. metabolites) also can be analyzed.
Resumo:
An apparatus which allows the direct measurement of the antioxidant capacity of volatiles compounds emitted from some herbs and culinary spices is described. The device comprises: a sample chamber, a mixing chamber, a pump and, a detection system. Volatiles from Clove (Syzygium aromaticum (L.) Merr. & L.M. Perry) were purged and captured into a DPPH-containing solution and changes in the absorbance were recorded on-line. Linear response was observed when temperature was set between 30-53 ºC; nitrogen flow was 15 mL min-1 during 60 min; DPPH concentration was 20 µmol L-1 and a sample size (powdered Clove) ranged between 200-1000 mg.