41 resultados para microgravity gas-liquid two-phase flow
Resumo:
The principal techniques for the synthesis of liquid crystalline block copolymers are reviewed. The syntheses are done by living/controlled free radical chain polymerization. The copolymers display an amorphous continuous phase and a discontinuous liquid crystalline phase (LC). The presence of oxypropylenic segments disturbs the range of mesophase transitions at lower temperatures. This behavior is not observed when styrenic segments are employed and suggests that the liquid crystalline behavior can be modified in block copolymers to show mesophases at higher and lower temperatures according to the flexibility of the chain segment that is present.
Resumo:
Ozonization of theobroma oil at different applied ozone dosages was carried out with measurement of peroxide index values, oxygen percentage content and fatty acids composition. The comparison of peroxide values with percentage content of oxygen at different applied ozone dosages showed good correlation (r=0.9923). Unsaturated fatty acids and triacylglycerols decrease with ozone applied dosage due to ozone reaction with double bonds. Small amounts of oleic acid were consumed with applied ozone dosage at 35 mg/g, which demonstrated that peroxide values and oxygen content were not principally increased by the ozone attack on the double bonds, but other mechanisms could be involved in the reaction system.
Resumo:
Ozonation of sunflower oils with genetic modification High Oleic and High Oleic-Palmitic (AO and PO respectively) and without modification, High Linoleic (AL) at different applied ozone dosages was carried out with measurement of peroxide and acidity indexes values, fatty acids composition, oxygen percentage content and antimicrobial activity. The comparison of peroxides indexes and oxygen content at different applied ozone dosages in each oil showed good correlation (r = 0,99). Higher amount of oleic acid was consumed at higher applied ozone dosage in PO oil than AO oil, which can be related to the increase of acidity index. The antimicrobial activity was better for AL and PO ozonized oils.
Resumo:
Preparative high-speed counter-current chromatography (HSCCC) was successfully applied for separation and purification of sesquiterpenoids from an extract of Tussilago farfara L. with a two-phase solvent system composed of n-hexane-ethyl acetate- methanol-water (1:0.5:1.1:0.3, v/v/v/v). The separation produced a total of 32 mg of tussilagone, 18 mg of 14-acetoxy-7β-(3'-ethyl cis-crotonoyloxy)-lα-(2'-methyl butyryloxy)-notonipetranone and 21 mg of 7β-(3'-ethyl cis-crotonoyloxy)-lα-(2'- methyl butyryloxy)-3,14-dehydro-Z-notonipetranone from 500 mg of the crude extract in one step separation with the purity of 99.5, 99.4 and 99.1%, respectively, as determined by HPLC. The structures of these compounds were identified by ESI-MS, ¹H-NMR and 13C-NMR.
Resumo:
Supercritical fluid extraction was used to extract active compounds from the Chinese traditional medicinal D. dasycarpus under the pressure of 30 MPa and temperature of 45 ºC. Further separation and purification was established by high-speed counter-current chromatography (HSCCC) with a two-phase solvent system composed of n-hexane-ethyl acetate-methanol-water (1:0.8:1.3:0.9, volume ratio). The separation yielded a total of 47 mg of dictamnine, 24 mg of obacunone and 83 mg of fraxinellone from 1.0 g of the crude extract in one step separation with the purity of 99.2, 98.4 and 99.0%, respectively, as determined by HPLC. The chemical structures of these compounds were identified by ESI-MS, IR, ¹H-NMR and 13C-NMR.
Resumo:
The technique of pH-zone-refining counter-current chromatography was successfully applied to preparatively separate three C19-diterpenoid alkaloids from the crude extracts of Aconitum carmichaelii for the first time using a two-phase solvent system of petroleum ether-ethyl acetate-methanol-water (5:5:1:9, v/v/v/v). Mesaconitine (I), hypaconitine (II), and deoxyaconitine (III) were obtained from 2.5 g of the crude alkaloids in a one-step separation; the yields were 4.16%, 16.96%, and 5.05%, respectively. The purities of compounds I, II, and III were 93.0%, 95%, and 96%, respectively, as determined by HPLC. The chemical structures of the three compounds were identified by electrospray ionization mass spectrometry (ESI-MS) and NMR.
Resumo:
We describe a synthetic route consisting of five steps from aniline to obtain liquid crystal compounds derived from nitroazobenzene. Syntheses were performed during the second half of the semester in organic chemistry laboratory classes. Students characterized the liquid crystal phase by the standard melting point techniques, differential scanning calorimetry and polarized optical microscopy. These experiments allow undergraduate students to explore fundamentally important reactions in Organic Chemistry, as well as modern concepts in Chemistry such as self-assembly and self-organization, nanostructured materials and molecular electronics.
Resumo:
We have determined the number of circulating T, B and natural killer cells in renal transplant recipients in order to detect changes during cytomegalovirus (CMV) infections. Serial blood samples were taken from 61 patients on standard triple immunosuppression therapy (cyclosporin A, azathioprine and prednisone). Using two-color flow cytometry analysis, the absolute number of CD3+, CD4+, CD8+, CD19+, CD3+HLA-DR+ and CD16+56+ cells was determined. Forty-eight patients (78.7%) developed active CMV infection, and all of them subsequently recovered. Twenty of the infected patients (32.8%) presented symptoms compatible with CMV disease during the infectious process. The number of lymphocytes and their main subpopulations were normal before the onset of CMV disease. During the disease there was a decrease followed by a significant increase (P<0.005) in the number of CD3+, CD4+, CD8+ and CD3+HLA-DR+ cells. No significant changes were observed in natural killer cells or B lymphocytes during the disease. We conclude, as observed in all viremic patients recovering from infection, that recovery is associated with an increase in the number of T cell subsets. The monitoring of different lymphocyte subsets along with antigenemia can be extremely useful in the detection of patients at high risk of developing CMV symptoms, allowing the early introduction of antiviral therapy or the reduction of immunosuppression therapy.
Resumo:
We investigated the systemic and regional hemodynamic effects of early crystalloid infusion in an experimental model of septic shock induced by intravenous inoculation with live Escherichia coli. Anesthetized dogs received an intravenous infusion of 1.2 x 10(10) cfu/kg live E. coli in 30 min. After 30 min of observation, they were randomized to controls (no fluids; N = 7), or fluid resuscitation with lactated Ringer's solution, 16 ml/kg (N = 7) or 32 ml/kg (N = 7) over 30 min and followed for 120 min. Cardiac index, portal blood flow, mean arterial pressure, systemic and regional oxygen-derived variables, blood lactate, and gastric PCO2 were assessed. Rapid and progressive cardiovascular deterioration with reduction in cardiac output, mean arterial pressure and portal blood flow (~50, ~25 and ~70%, respectively) was induced by the live bacteria challenge. Systemic and regional territories showed significant increases in oxygen extraction and in lactate levels. Significant increases in venous-arterial (~9.6 mmHg), portal-arterial (~12.1 mmHg) and gastric mucosal-arterial (~18.4 mmHg) PCO2 gradients were also observed. Early fluid replacement, especially with 32 ml/kg volumes of crystalloids, promoted only partial and transient benefits such as increases of ~76% in cardiac index, of ~50% in portal vein blood flow and decreases in venous-arterial, portal-arterial, gastric mucosal-arterial PCO2 gradients (7.2 ± 1.0, 7.2 ± 1.3 and 9.7 ± 2.5 mmHg, respectively). The fluid infusion promoted only modest and transient benefits, unable to restore the systemic and regional perfusional and metabolic changes in this hypodynamic septic shock model.
Resumo:
Microscopic visualization, especially in transparent micromodels, can provide valuable information to understand the transport phenomena at pore scale in different process occurring in porous materials (food, timber, soils, etc.). Micromodels studies focus mainly on the observation of multi-phase flow, which presents a greater proximity to reality. The aim of this study was to study the process of flexography and its application in the manufacture of polyester resin transparent micromodels and its application to carrots. Materials used to implement a flexo station for micromodels construction were thermoregulated water bath, exposure chamber to UV light, photosensitive substance (photopolymer), RTV silicone polyester resin, and glass plates. In this paper, data on size distribution of a particular kind of carrot we used, and a transparent micromodel with square cross-section as well as a Log-normal pore size distribution with pore radii ranging from 10 to 110 µm (average of 22 µm and micromodel size of 10 × 10 cm) were built. Finally, it stresses that it has successfully implemented the protocol processing 2D polyester resin transparent micromodels.
Resumo:
In the present work, the development of a method based on the coupling of flow analysis (FA), hydride generation (HG), and derivative molecular absorption spectrophotometry (D-EAM) in gas phase (GP), is described in order to determine total antimony in antileishmanial products. Second derivative order (D²224nm) of the absorption spectrum (190 - 300 nm) is utilized as measurement criterion. Each one of the parameters involved in the development of the proposed method was examined and optimized. The utilization of the EAM in GP as detection system in a continuous mode instead of atomic absorption spectrometry represents the great potential of the analytic proposal.