130 resultados para headspace solid-phase microextraction
Resumo:
A simple and fast approach for solid phase extraction is herein described, and used to determine trace amounts of Pb2+ and Cu2+ metal ions. The solid phase support is sodium dodecyl sulfate (SDS)-coated γ-alumina modified with bis(2-hydroxy acetophenone)-1,6-hexanediimine (BHAH) ligand. The adsorbed ions were stripped from the solid phase by 6 mL of 4 M nitric acid as eluent. The eluting solution was analyzed by flame atomic absorption spectrometry (FAAS). The sorption recovery of metal ions was investigated with regard to the effects of pH, amount of ligand, γ-alumina and surfactant and the amount and type of eluent. Complexation of BHAH with Pb2+ or Cu2+ ions was examined via spectrophotometry using the HypSpec program. The detection limit for Cu2+ was 7.9 µg L-1 with a relative standard deviation of 1.67%, while that for Pb2+ was 6.4 µg L-1 with a relative standard deviation of 1.64%. A preconcentration factor of 100 was achieved for these ions. The method was successfully applied to determine analyte concentrations in samples of liver, parsley, cabbage, and water.
Resumo:
In the present work, a simple and rapid ligand-less, in situ, surfactant-based solid phase extraction for the preconcentration of copper in water samples was developed. In this method, a cationic surfactant (n-dodecyltrimethylammonium bromide) was dissolved in an aqueous sample followed by the addition of an appropriate ion-pairing agent (ClO4-). Due to the interaction between the surfactant and ion-pairing agent, solid particles were formed and subsequently used for the adsorption of Cu(OH)2 and CuI. After centrifugation, the sediment was dissolved in 1.0 mL of 1 mol L-1 HNO3 in ethanol and aspirated directly into the flame atomic absorption spectrometer. In order to obtain the optimum conditions, several parameters affecting the performance of the LL-ISS-SPE, including the volumes of DTAB, KClO4, and KI, pH, and potentially interfering ions, were optimized. It was found that KI and phosphate buffer solution (pH = 9) could extract more than 95% of copper ions. The amount of copper ions in the water samples varied from 3.2 to 4.8 ng mL-1, with relative standard deviations of 98.5%-103%. The determination of copper in water samples was linear over a concentration range of 0.5-200.0 ng mL-1. The limit of detection (3Sb/m) was 0.1 ng mL-1 with an enrichment factor of 38.7. The accuracy of the developed method was verified by the determination of copper in two certified reference materials, producing satisfactory results.
Resumo:
An evaluation of the pesticides extracted from the soil matrix was conducted using a citrate-buffered solid phase dispersion sample preparation method (QuEChERS). The identification and quantitation of pesticide compounds was performed using gas chromatography-mass spectrometry. Because of the occurrence of the matrix effect in 87% of the analyzed pesticides, the quantification was performed using matrix-matched calibration. The method's quantification limits were between 0.01 and 0.5 mg kg-1. Repeatability and intermediate precision, expressed as a relative standard deviation percentage, were less than 20%. The recoveries in general ranged between 62% and 99%, with a relative standard deviation < 20%. All the responses were linear, with a correlation coefficient (r) ≥0.99.
Resumo:
A flow injection spectrophotometric procedure with on-line solid-phase reactor containing ion triiodide immobilized in an anion-exchange resin is proposed for the determination of adrenaline (epinephrine) in pharmaceutical products. Adrenaline is oxidized by triiodide ion immobilized in an anionic-exchange resin yielding adrenochrome which is transported by the carrier solution and detected at a wavelength of 488 nm. Adrenaline was determined in three pharmaceutical products in the 6.4 x 10-6 to 3.0 x 10-4 mol L-1 concentration range with a detection limit of 4.8 x 10-7 mol L-1. The recovery of this analyte in three samples ranged from 96.0 to 105 %. The analytical frequency was 80 determinations per hour and the RSDs were less than 1 % for adrenaline concentrations of 6.4 x 10-5 and 2.0 x 10-4 mol L-1 (n=10). A paired t-test showed that all results obtained for adrenaline in commercial formulations using the proposed flow injection procedure and a spectrophotometric batch procedure agree at the 95% confidence level.
Resumo:
In this work is proposed a solid phase preconcentration system of Co2+ ions and its posterior determination by GFAAS in which fractional factorial design and response surface methodology (RSM) were used for optimization of the variables associated with preconcentration system performance. The method is based on cobalt extraction as a complex Co2+-PAN (1:2) in a mini-column of polyurethane foam (PUF) impregnated with 1-(2-pyridylazo)-naphthol (PAN) followed by elution with HCl solution and its determination by GFAAS. The chemical and flow variables studied were pH, buffer concentration, eluent concentration and preconcentration and elution flow rates. Results obtained from fractional factorial design 2(5-1) showed that only the variables pH, buffer concentration and interaction (pH X buffer concentration) based on analysis of variance (ANOVA) were statistically significant at 95% confidence level. Under optimised conditions, the method provided an enrichment factor of 11.6 fold with limit of detection and quantification of 38 and 130 ng L-1, respectively, and linear range varying from 0.13 to 10 µg L-1. The precision (n = 9) assessed by relative standard deviation (RSD) was respectively 5.18 and 2.87% for 0.3 and 3.0 µg L-1 cobalt concentrations.
Resumo:
A procedure for separation and preconcentration of trace amounts of Zn(II) from aqueous media is proposed. The procedure is based on the adsorption of Zn2+ on octadecyl bonded silica membrane disk modified with N,N'-disalicylidene-1,2-phenylendiamine at pH 7. The retained zinc ions were then stripped from the disk with a minimal amount of 1.5 mol L-1 hydrochloric acid solution as eluent, and determined by flame atomic absorption spectrometry. Maximum capacity of the membrane disk modified with 5 mg of the ligand was found to be 226 µg Zn2+. The relative standard deviation of zinc for ten replicate extraction of 10 µg zinc from 1000 mL samples was 1.2%. The limit of detection of the proposed method was 14 ng of Zn2+ per 1000 mL. The method was successfully applied to the determination of zinc in natural water samples and accuracy was examined by recovery experiments and independent analysis by graphite furnace atomic absorption spectrometry (GFAAS).
Resumo:
We developed an efficient method to prepare a hybrid inorganic-organic composite based on polyvinyl alcohol (PVA) and polysiloxane using the sol-gel disc technique. Antigen obtained from Yersinia pestis was covalently immobilized onto these discs with glutaraldehyde and used as solid phase in ELISA for antibody detection in serum of rabbits experimentally immunized with plague. Using 1.25 µg antigen per disc, a peroxidase conjugate dilution of 1:4,000 and a serum dilution of 1:200 were adequate for the establishment of the procedure. These values are similar to those used for PVA-glutaraldehyde discs, plasticized filter paper discs and the polyaniline-Dacron composite discs. This procedure is comparable to that which utilizes the adsorption of the antigen to conventional PVC plates, with the amount of antigen being one fourth that employed in conventional PVC plates (5 µg/well). In addition to the performance of the polysiloxane/PVA-glutaraldehyde disc as a matrix for immunodetection, its easy synthesis and low cost are additional advantages for commercial application.
Resumo:
The aim of the present study was the assessment of volatile organic compounds produced by Sporidiobolus salmonicolor (CBS 2636) using methyl and ethyl ricinoleate, ricinoleic acid and castor oil as precursors. The analysis of the volatile organic compounds was carried out using Head Space Solid Phase Micro-Extraction (HS - SPME). Factorial experimental design was used for investigating extraction conditions, verifying stirring rate (0-400 rpm), temperature (25-60 ºC), extraction time (10-30 minutes), and sample volume (2-3 mL). The identification of volatile organic compounds was carried out by Gas Chromatography with Mass Spectrum Detector (GC/MSD). The conditions that resulted in maximum extraction were: 60 ºC, 10 minutes extraction, no stirring, sample volume of 2.0 mL, and addition of saturated KCl (1:10 v/v). In the bio-production of volatile organic compounds the effect of stirring rate (120-200 rpm), temperature (23-33 ºC), pH (4.0-8.0), precursor concentration (0.02-0.1%), mannitol (0-6%), and asparagine concentration (0-0.2%) was investigated. The bio-production at 28 ºC, 160 rpm, pH 6,0 and with the addition of 0.02% ricinoleic acid to the medium yielded the highest production of VOCs, identified as 1,4-butanediol, 1,2,2-trimethylciclopropilamine, beta-ionone; 2,3-butanodione, pentanal, tetradecane, 2-isononenal, 4-octen-3-one, propanoic acid, and octadecane.
Resumo:
Solid-phase microextraction (SPME) has been applied to direct extraction of 11 organophosphorus pesticides in water using a 100 mm fiber polydimethylsiloxane. The method was evaluated with respect time of exposure, detection limits (LODs), linearity and precision. The detection limits (S/N = 3) depend of each pesticide and varie about ng/L levels. The linearity was satisfactory with coefficients of correlation usually greater than 0.993. The precision of the method was determined by extraction from 4.0 mg/L aqueous standard with coefficients of variation between 5.7 to 17.2%.
Resumo:
The pyrethroids bifenthrin, permethrin, cypermethrin and deltamethrin were extracted by solid phase extraction (SPE) and solid phase microextraction (SPME). The analysis were performed on a gas chromatograph with electron capture detection (GC-ECD). Octadecil Silano-C18, Florisil and Silica stationary phases were studied for SPE. Better results were obtained for Florisil which gave recoveries from 80% to 108%. Pyrethroids extraction by SPME showed a linear response and a detection limit of 10 pg ml-1. Although the data showed that the two extraction methods were able to isolate the pesticide residues from water samples, the best results were obtained by using SPME which is more sensitive, faster, cheeper, being a more useful technique for the analysis of pyrethroids in drinking water.
Resumo:
The sampling of volatile organic compounds using solid phase microextraction is reviewed and its principles are described. The development and application of solid phase microextraction in the sampling of VOCs are presented and discussed.
Resumo:
A new solid phase microextraction (SPME) system, known as in-tube SPME, was recently developed using an open tubular fused-silica capilary column, instead of an SPME fiber, as the SPME device. On-line in-tube SPME is usually used in combination with high performance liquid chromatography. Drugs in biological samples are directly extracted and concentrated in the stationary phase of capillary columns by repeated draw/eject cycles of sample solution, and then directly transferred to the liquid chromatographic column. In-tube SPME is suitable for automation. Automated sample handling procedures not only shorten the total analysis time, but also usually provide better accuracy and precision relative to manual techniques. In-tube SPME has been demonstrated to be a very effective and highly sensitive technique to determine drugs in biological samples for various purposes such as therapeutic drug monitoring, clinical toxicology, bioavailability and pharmacokinetics.
Resumo:
The restricted availability of water sources suitable for consumption and high costs for obtaining potable water has caused an increase of the conscience concerning the use. Thus, there is a high demand for "environmentally safe methods" which are according to the principles of Green Chemistry. Moreover, these methods should be able to provide reliable results for the analysis of water quality for various pollutants, such as phenol. In this work, greener alternatives for sample preparation for phenol determination in aqueous matrices are presented, which include: liquid phase microextraction, solid phase microextraction, flow analysis, cloud point extraction and aqueous two-phase systems.
Resumo:
In this work, the volatile chromatographic profiles of roasted Arabica coffees, previously analyzed for their sensorial attributes, were explored by principal component analysis. The volatile extraction technique used was the solid phase microextraction. The correlation optimized warping algorithm was used to align the gas chromatographic profiles. Fifty four compounds were found to be related to the sensorial attributes investigated. The volatiles pyrrole, 1-methyl-pyrrole, cyclopentanone, dihydro-2-methyl-3-furanone, furfural, 2-ethyl-5-methyl-pyrazine, 2-etenyl-n-methyl-pyrazine, 5-methyl-2-propionyl-furan compounds were important for the differentiation of coffee beverage according to the flavour, cleanliness and overall quality. Two figures of merit, sensitivity and specificity (or selectivity), were used to interpret the sensory attributes studied.
Resumo:
The determination of pesticide residues in water samples by Liquid Chromatography require sample preparation for extraction and enrichment of the analytes with the minimization of interferences to achieve adequate detection limits. The Solid Phase Extraction (SPE), Solid Phase Microextraction (SPME), Stir Bar Sorptive Extraction (SBSE) and Dispersive Liquid-Liquid Microextraction (DLLME) techniques have been widely used for extraction of pesticides in water. In this review, the principles of these sample preparation techniques associated with the analysis by Liquid Chromatography with Diode Array Detection (LC-DAD) or Mass Spectrometry (LC-MS) are described and an overview of several applications were presented and discussed.