38 resultados para atomic dispersion
Resumo:
A procedure for separation and preconcentration of trace amounts of Zn(II) from aqueous media is proposed. The procedure is based on the adsorption of Zn2+ on octadecyl bonded silica membrane disk modified with N,N'-disalicylidene-1,2-phenylendiamine at pH 7. The retained zinc ions were then stripped from the disk with a minimal amount of 1.5 mol L-1 hydrochloric acid solution as eluent, and determined by flame atomic absorption spectrometry. Maximum capacity of the membrane disk modified with 5 mg of the ligand was found to be 226 µg Zn2+. The relative standard deviation of zinc for ten replicate extraction of 10 µg zinc from 1000 mL samples was 1.2%. The limit of detection of the proposed method was 14 ng of Zn2+ per 1000 mL. The method was successfully applied to the determination of zinc in natural water samples and accuracy was examined by recovery experiments and independent analysis by graphite furnace atomic absorption spectrometry (GFAAS).
Resumo:
In this work, a new mathematical equation correction approach for overcoming spectral and transport interferences was proposed. The proposal was applied to eliminate spectral interference caused by PO molecules at the 217.0005 nm Pb line, and the transport interference caused by variations in phosphoric acid concentrations. Correction may be necessary at 217.0005 nm to account for the contribution of PO, since Atotal217.0005 nm = A Pb217.0005 nm + A PO217.0005 nm. This may be easily done by measuring other PO wavelengths (e.g. 217.0458 nm) and calculating the relative contribution of PO absorbance (A PO) to the total absorbance (Atotal) at 217.0005 nm: A Pb217.0005 nm = Atotal217.0005 nm - A PO217.0005 nm = Atotal217.0005 nm - k (A PO217.0458 nm). The correction factor k is calculated from slopes of calibration curves built up for phosphorous (P) standard solutions measured at 217.0005 and 217.0458 nm, i.e. k = (slope217.0005 nm/slope217.0458 nm). For wavelength integrated absorbance of 3 pixels, sample aspiration rate of 5.0 ml min-1, analytical curves in the 0.1 - 1.0 mg L-1 Pb range with linearity better than 0.9990 were consistently obtained. Calibration curves for P at 217.0005 and 217.0458 nm with linearity better than 0.998 were obtained. Relative standard deviations (RSD) of measurements (n = 12) in the range of 1.4 - 4.3% and 2.0 - 6.0% without and with mathematical equation correction approach were obtained respectively. The limit of detection calculated to analytical line at 217.0005 nm was 10 µg L-1 Pb. Recoveries for Pb spikes were in the 97.5 - 100% and 105 - 230% intervals with and without mathematical equation correction approach, respectively.
Resumo:
This work describes a method to determine Cu at wide range concentrations in a single run without need of further dilutions employing high-resolution continuum source flame atomic absorption spectrometry. Different atomic lines for Cu at 324.754 nm, 327.396 nm, 222.570 nm, 249.215 nm and 224.426 nm were evaluated and main figures of merit established. Absorbance measurements at 324.754 nm, 249.215 nm and 224.426 nm allows the determination of Cu in the 0.07 - 5.0 mg L-1, 5.0 - 100 mg L-1 and 100 - 800 mg L-1 concentration intervals respectively with linear correlation coefficients better than 0.998. Limits of detection were 21 µg L-1, 310 µg L-1 and 1400 µg L-1 for 324.754 nm, 249.215 nm and 224.426 nm, respectively and relative standard deviations (n = 12) were £ 2.7%. The proposed method was applied to water samples spiked with Cu and the results were in agreement at a 95% of confidence level (paired t-test) with those obtained by line-source flame atomic absorption spectrometry.
Warning system based on theoretical-experimental study of dispersion of soluble pollutants in rivers
Resumo:
Information about capacity of transport and dispersion of soluble pollutants in natural streams are important in the management of water resources, especially in planning preventive measures to minimize the problems caused by accidental or intentional waste, in public health and economic activities that depend on the use of water. Considering this importance, this study aimed to develop a warning system for rivers, based on experimental techniques using tracers and analytical equations of one-dimensional transport of soluble pollutants conservative, to subsidizing the decision-making in the management of water resources. The system was development in JAVA programming language and MySQL database can predict the travel time of pollutants clouds from a point of eviction and graphically displays the temporal distribution of concentrations of passage clouds, in a particular location, downstream from the point of its launch.
Resumo:
A non isotropic turbulence model is extended and applied to three dimensional stably stratified flows and dispersion calculations. The model is derived from the algebraic stress model (including wall proximity effects), but it retains the simplicity of the "eddy viscosity" concept of first order models. The "modified k-epsilon" is implemented in a three dimensional numerical code. Once the flow is resolved, the predicted velocity and turbulence fields are interpolated into a second grid and used to solve the concentration equation. To evaluate the model, various steady state numerical solutions are compared with small scale dispersion experiments which were conducted at the wind tunnel of Mitsubishi Heavy Industries, in Japan. Stably stratified flows and plume dispersion over three distinct idealized complex topographies (flat and hilly terrain) are studied. Vertical profiles of velocity and pollutant concentration are shown and discussed. Also, comparisons are made against the results obtained with the standard k-epsilon model.
Resumo:
Microstructural changes, that is an important feature for the understanding of the velocity variance in sedimentation is investigated with numerical simulations. The simulations are used to describe velocity fluctuations and hydrodynamic dispersion in a suspension of interacting point-particles sedimenting in a rectangular box with periodic sides and impenetrable bottom and top. It is observed how the positions of the particles evolve in a finite container. The suspension that was initially random in the gravity direction only, tends to be fully randomized as a result of the relative arrangements of the particles and the hydrodynamic interactions between them. The computer simulations, based on statistics over a significant number of particle configurations, suggest velocity variances and diffusivities dependent on the size of the simulated system but with anisotropy in velocity fluctuations and diffusion coefficients nearly independent of the box size.
Resumo:
Reliable predictions of remaining lives of civil or mechanical structures subjected to fatigue damage are very difficult to be made. In general, fatigue damage is extremely sensitive to the random variations of material mechanical properties, environment and loading. These variations may induce large dispersions when the structural fatigue life has to be predicted. Wirsching (1970) mentions dispersions of the order of 30 to 70 % of the mean calculated life. The presented paper introduces a model to estimate the fatigue damage dispersion based on known statistical distributions of the fatigue parameters (material properties and loading). The model is developed by expanding into Taylor series the set of equations that describe fatigue damage for crack initiation.
Resumo:
The Graphite furnace atomic absorption spectrometry (GF AAS) was the technique chosen by the inorganic contamination laboratory (INCQ/ FIOCRUZ) to be validated and applied in routine analysis for arsenic detection and quantification. The selectivity, linearity, sensibility, detection, and quantification limits besides accuracy and precision parameters were studied and optimized under Stabilized Temperature Platform Furnace (STPF) conditions. The limit of detection obtained was 0.13 µg.L-1 and the limit of quantification was 1.04 µg.L-1, with an average precision, for total arsenic, less than 15% and an accuracy of 96%. To quantify the chemical species As(III) and As(V), an ion-exchange resin (Dowex 1X8, Cl- form) was used and the physical-chemical parameters were optimized resulting in a recuperation of 98% of As(III) and of 90% of As(V). The method was applied to groundwater, mineral water, and hemodialysis purified water samples. All results obtained were lower than the maximum limit values established by the legal Brazilian regulations, in effect, 50, 10, and 5 µg.L-1 para As total, As(III) e As(V), respectively. All results were statistically evaluated.