100 resultados para Volumetric displays
Resumo:
Modern agriculture techniques have a great impact on crops and soil quality, especially by the increased machinery traffic and weight. Several devices have been developed for determining soil properties in the field, aimed at managing compacted areas. Penetrometry is a widely used technique; however, there are several types of penetrometers, which have different action modes that can affect the soil resistance measurement. The objective of this study was to compare the functionality of two penetrometry methods (manual and automated mode) in the field identification of compacted, highly mechanized sugarcane areas, considering the influence of soil water volumetric content (θ) on soil penetration resistance (PR). Three sugarcane fields on a Rhodic Eutrudrox were chosen, under a sequence of harvest systems: one manual harvest (1ManH), one mechanized harvest (1MH) and three mechanized harvests (3MH). The different degrees of mechanization were associated to cumulative compaction processes. An electronic penetrometer was used on PR measurements, so that the rod was introduced into the soil by hand (Manual) and by an electromechanical motor (Auto). The θ was measured in the field with a soil moisture sensor. Results showed an effect of θ on PR measurements and that regression models must be used to correct data before comparing harvesting systems. The rod introduction modes resulted in different mean PR values, where the "Manual" overestimated PR compared to the "Auto" mode at low θ.
Resumo:
In the State of Rio Grande do Sul, the municipality of Pelotas is responsible for 90 % of peach production due to its suitable climate and soil conditions. However, there is the need for new studies that aim at improved fruit quality and increased yield. The aim of this study was to evaluate the relationship that exists between soil physical properties and properties in the peach plant in the years 2010 and 2011 by the technique of multivariate canonical correlation. The experiment was conducted in a peach orchard located in the municipality of Morro Redondo, RS, Brazil, where an experimental grid of 101 plants was established. In a trench dug beside each one of the 101 plants, soil samples were collected to determine silt, clay, and sand contents, soil density, total porosity, macroporosity, microporosity, and volumetric water content in the 0.00-0.10 and 0.10-0.20 m layers, as well as the depth of the A horizon. In each plant and in each year, the following properties were assessed: trunk diameter, fruit size and number of fruits per plant, average weight of the fruit per plant, fruit pulp firmness, Brix content, and yield from the orchard. Exploratory analysis of the data was undertaken by descriptive statistics, and the relationships between the physical properties of the soil and of the plant were assessed by canonical correlation analysis. The results showed that the clay and microporosity variables were those that exhibited the highest coefficients of canonical cross-loading with the plant properties in the soil layers assessed, and that the variable of mean weight of the fruit per plant was that which had the highest coefficients of canonical loading within the plant group for the two years assessed.
Resumo:
Studies testing the High Energy Moisture Characteristic (HEMC) technique in tropical soils are still incipient. By this method, the effects of different management systems can be evaluated. This study investigated the aggregation state of an Oxisol under coffee with Brachiaria between crop rows and surface-applied gypsum rates using HEMC. Soil in an experimental area in the Upper São Francisco region, Minas Gerais, was studied at depths of 0.05 and 0.20 m in coffee rows. The treatments consisted of 0, 7, and 28 Mg ha-1 of agricultural gypsum rates distributed on the soil surface of the coffee rows, between which Brachiaria was grown and periodically cut, and compared with a treatment without Brachiaria between coffee rows and no gypsum application. To determine the aggregation state using the HEMC method, soil aggregates were placed in a Büchner funnel (500 mL) and wetted using a peristaltic pump with a volumetric syringe. The wetting was applied increasingly at two pre-set speeds: slow (2 mm h-1) and fast (100 mm h-1). Once saturated, the aggregates were exposed to a gradually increasing tension by the displacement of a water column (varying from 0 to 30 cm) to obtain the moisture retention curve [M = f (Ψ) ], underlying the calculation of the stability parameters: modal suction, volume of drainable pores (VDP), stability index (slow and fast), VDP ratio, and stability ratio. The HEMC method conferred sensitivity in quantifying the aggregate stability parameters, and independent of whether gypsum was used, the soil managed with Brachiaria between the coffee rows, with regular cuts discharged in the crop row direction, exhibited a decreased susceptibility to disaggregation.
Resumo:
Field capacity (FC) is a parameter widely used in applied soil science. However, its in situ method of determination may be difficult to apply, generally because of the need of large supplies of water at the test sites. Ottoni Filho et al. (2014) proposed a standardized procedure for field determination of FC and showed that such in situ FC can be estimated by a linear pedotransfer function (PTF) based on volumetric soil water content at the matric potential of -6 kPa [θ(6)] for the same soils used in the present study. The objective of this study was to use soil moisture data below a double ring infiltrometer measured 48 h after the end of the infiltration test in order to develop PTFs for standard in situ FC. We found that such ring FC data were an average of 0.03 m³ m- 3 greater than standard FC values. The linear PTF that was developed for the ring FC data based only on θ(6) was nearly as accurate as the equivalent PTF reported by Ottoni Filho et al. (2014), which was developed for the standard FC data. The root mean squared residues of FC determined from both PTFs were about 0.02 m³ m- 3. The proposed method has the advantage of estimating the soil in situ FC using the water applied in the infiltration test.
Resumo:
Soil quality indicators such as penetration resistance (PR) and bulk density (BD) are traditionally determined in a single undisturbed soil sample. The aim of this study was to assess the effect of PR measurements of undisturbed samples on the determination of BD in the same sample of two soils differing in clay contents. To this end, samples were collected from the 0.00-0.10 and 0.10-0.20 m layers of two soils of clayey and very clayey texture. Volumetric rings were used to collect a total of 120 undisturbed soil samples from each soil layer that were divided into two subsets containing 60 units each. One sample set, designated “perforated samples”, was used to determine PR and BD in the same undisturbed sample; the other, named “intact samples”, was used to determine BD only. Bulk density values for perforated and intact samples were compared by analysis of variance, using a completely randomized experimental design. Means were compared by the t-test at 5 %. The BD values for the clayey soil were similar in perforated and intact samples from the two layers. However, BD of the very clayey soil was lower in the perforated than in the intact samples at both depths. Therefore, PR and BD in clayey soils can be accurately determined in the same undisturbed sample whereas in very clayey soils, different samples are required for this purpose.
Resumo:
ABSTRACT Particle density, gravimetric and volumetric water contents and porosity are important basic concepts to characterize porous systems such as soils. This paper presents a proposal of an experimental method to measure these physical properties, applicable in experimental physics classes, in porous media samples consisting of spheres with the same diameter (monodisperse medium) and with different diameters (polydisperse medium). Soil samples are not used given the difficulty of working with this porous medium in laboratories dedicated to teaching basic experimental physics. The paper describes the method to be followed and results of two case studies, one in monodisperse medium and the other in polydisperse medium. The particle density results were very close to theoretical values for lead spheres, whose relative deviation (RD) was -2.9 % and +0.1 % RD for the iron spheres. The RD of porosity was also low: -3.6 % for lead spheres and -1.2 % for iron spheres, in the comparison of procedures – using particle and porous medium densities and saturated volumetric water content – and monodisperse and polydisperse media.
Resumo:
The objectives of this work were to determine the heliotropic movements of the upper trifoliates for two soybean cultivars, BR 16 and Embrapa 48, during a daily cycle, in three phenological stages and two water regimes, and to estimate the impact of irrigation and daily leaflet movements on agronomic characteristics and grain yield. Heliotropic movements were studied in three phenological stages: V4-V6, V7-V10, and R5 in irrigated and non-irrigated plots. For each stage, the leaflet elevation and azimuth were measured hourly. Under a low (V4-V6 stage) and mid (V7-V10 stage) leaf area index (LAI) the diaheliotropism was slightly more frequent and intensive in non-irrigated than in irrigated plants, only at early morning and late afternoon hours. At R5 stage (high LAI) the paraheliotropism of superior trifoliates was predominant and more intensive in non-irrigated plants. The heliotropic movements are correlated to carbon gain, but not to environment (light intensity or temperature), for measurements at 11h. 'Embrapa 48' expresses greater paraheliotropism than 'BR 16' at high LAI, while 'BR 16' displays lower heliotropic plasticity under irrigation. In spite of significant heliotropic differences, genotype and water availability treatments did not influence the final grain yield.
Resumo:
This study highlighted the effect of planting coast-cross grass and forage peanut cv. Amarilis between rows of Natal oranges on spreading of Guignardia citricarpa ascospores and consequent citrus black spot control. Treatments evaluated were: 1- conventional cultivation, free of fungicides; 2- conventional cultivation, using protective fungicides; 3- inter-crop cultivation of coast-cross grass between rows of citrus crops and; 4- inter-cropping cultivation of forage peanut between the rows of citrus crops. Quest Volumetric Spore SystemTM traps were set in order to determine the number of ascospores released. A total of 33 inspections were conducted weekly, from the end of August until early September the following year. A diagrammatic scale was used to determine the severity of the disease as well as the percentage of fruits having a commercial standard. The coast-cross grass was more effective in reducing the number of ascospores produced, whose average statistics were lower than in the conventional treatments, free-fungicides. The inter-crop and conventional cultivation method coupled with fungicide treatment was more effective in reducing the severity of citrus black spot symptoms, and differs statistically from the fungicide-free control method. These methods also resulted in a higher percentage of fruits of a commercial standard, ranging from the 89% through the 91% percentile, and the cultivation, free of fungicides, fell within the 73%.
Resumo:
The classical volumetric titration of Fe2+ with MnO4-, used in some routine analysis as well as in undergraduate courses was improved. SnCl2 (to reduce Fe3+ to Fe2+) and HgCl2 (to oxidize excess SnCl2) were substituted by metallic zinc in boiling solutions, thus avoiding the toxic HgCl2 and Hg2Cl2; nitrate ions do not interfere in the improved methodology (it is an interference in the classical one) and the reproducibility of the determinations is increased by using metallic zinc. Determinations by students of undergraduate courses are discussed.
Resumo:
A new automated system for acid-base flow titrations is proposed. In the operation mode, several sample to titrant volumetric ratios are injected in an air segmented plug. Five three way solenoid valves and three acrilic junctions, assembled in a hidrodynamic injection system, were accountable for the monosegmented reagents plug formation. A turbulent flow reactor was used for a perfect mix of reagents in the plug. The detector system employed a glass combined electrode fitted in an acrilic holder. Titrations of hydrochloric, nitric and acetic acids, in several concentrations, were performed with standard sodium hidroxide, for evaluation of the efficiency of the system. The relative standard deviation of the determinations was about ±0,5% and each titration was carried out in 3-4 minutes. A Quick BASIC 4.5® program was developed for the titrator control.
Resumo:
Calculation of uncertainty of results represents the new paradigm in the area of the quality of measurements in laboratories. The guidance on the Expression of Uncertainty in Measurement of the ISO / International Organization for Standardization assumes that the analyst is being asked to give a parameter that characterizes the range of the values that could reasonably be associated with the result of the measurement. In practice, the uncertainty of the analytical result may arise from many possible sources: sampling, sample preparation, matrix effects, equipments, standards and reference materials, among others. This paper suggests a procedure for calculation of uncertainties components of an analytical result due to sample preparation (uncertainty of weights and volumetric equipment) and instrument analytical signal (calibration uncertainty). A numerical example is carefully explained based on measurements obtained for cadmium determination by flame atomic absorption spectrophotometry. Results obtained for components of total uncertainty showed that the main contribution to the analytical result was the calibration procedure.
Resumo:
The manufacture of glass-ceramics is an alternative route for the commercial use of metallurgical slags. Such types of glass-ceramics may find commercial applications owing to their low cost, good mechanical properties and superior visual aspect. Besides, due to the elimination of that industrial residue from the environment and also due to the possibility of replacement of natural stones such as marbles and granites, the use of slags is an activity with strong ecological appeal. While the use of blast-furnace slags for the production of glass-ceramics is well known, the utilization of steel making slags constitutes a challenge, because these materials possess low concentration of SiO2. In this work a novel composition for producing glasses and glass-ceramics from a steelmaking slag is presented. The crystal nucleation kinetics, the characterization of the resulting microstructures for two different thermal treatments and mechanical properties of the glass-ceramics are discussed. A glass-ceramic having a marble aspect, fine volumetric crystallization, high degree of crystallization and improved mechanical strength was obtained.
Resumo:
A lab-made interface for acquisition of instrumental analog signals between 0 and 5 V at a frequency up to 670 kHz at the parallel port of a microcomputer is described. Since it uses few and small components, it was built into the connector of a printer parallel cable. Its performance was evaluated by monitoring the signals of four different instruments and similar analytical curves were obtained with the interface and from readings from the instrument' displays. Because the components are cheap (~U$35,00) and easy to get, the proposed interface is a simple and economical alternative for data acquisition in small laboratories for routine work, research and teaching.
Resumo:
A simple and rapid precipitation titration method was developed and validated to determine sulfate ion content in indinavir sulfate raw material. 0.1 mol L-1 lead nitrate volumetric solution was used as titrant employing potentiometric endpoint determination using a lead-specific electrode. The United States Pharmacopoeia Forum indicates a potentiometric method for sulfate ion quantitation using 0.1 mol L-1 lead perchlorate as titrant. Both methods were validated concerning linearity, precision and accuracy, yielding good results. The sulfate ion content found by the two validated methods was compared by the statistical t-student test, indicating that there was no statistically significant difference between the methods.
Resumo:
Chitosan was acetylated during 2, 5 and 10h and physical gels were obtained at different polymer concentrations in N,N-dimethylacetamide containing 5% of LiCl. Acetylation was confirmed by infrared spectroscopy and 13C NMR, and degrees of acetylation in the range of 0.82-0.91 were determined by NMR. The O-acetylation degree (0.12-0.15) was exclusively determined by a volumetric method. Rheological studies showed that the storage modulus values were smaller for the more acetylated samples and increased with the temperature and the polymer concentration. All the gels presented storage modulus superior to loss modulus, evidencing more elastic than viscous characteristics. The results obtained in this work suggest a gelation process based on a balance between O and N-acetylation and intermolecular bonds.