66 resultados para Titanium impurities
Resumo:
Titanium is an attractive material for structural and biomedical applications because of its excellent corrosion resistance, biocompatibility and high strength-to-weight ratio. The high reactivity of titanium in the liquid phase makes it difficult to produce it by fusion. Powder metallurgy has been shown to be an adequate technique to obtain titanium samples at low temperatures and solid-phase consolidation. The production of compacts with different porosities obtained by uniaxial pressing and vacuum sintering is briefly reviewed. Powder particle size control has been shown to be very important for porosity control. Sample characterization was made using scanning electron microscopy (SEM) images.
Resumo:
The crystallization of hydroxyapatite (HA) in aqueous solution can be described by the mechanism ACP -> OCP -> HA. In this work, it was studied the influence of K+, Mg2+, SO4(2-) and CO3(2-) ions in the formation of ACP and in its conversion to OCP, using biomimetic coatings on metallic substrates of commercially pure titanium (Ti c.p.). The results showed that Mg2+ and CO3(2-) ions favored both the formation of ACP and its conversion to OCP. Differently, K+ and SO4(2-) ions did not influence the formation of ACP and, consequently, interfered in the conversion to OCP.
Resumo:
The osseointegrated titanium implants are reliable and safe alternatives to treatments for long periods of time. For surface modification, thermal aspersion of TiO2 was used. The samples with and without TiO2 were treated with NaOH and SBF in order to obtain a layer of HA. Characterization was done by SEM and FTIR. The images of HA obtained by SEM show a uniform morphology and a porous structure with spherical particles. The IR spectra show that the surface of Ticp/ TiO2 is more favorable for the HA deposit, as can be seen by the increase of the crystalline structure and the very intense and defined bands of the OH group of HA that is verified about 3571 and 630 cm-1. Thus the Ticp/ TiO2 surface presents a satisfactory nucleation of HA when compared to Ticp.
Resumo:
The decolorization and degradation of direct red 23 azo dye have been investigated in aqueous suspension of titanium dioxide under artificial irradiation. The effects of some operational parameters such as azo dye concentration, catalyst loading, and solution pH were investigated at 30.0 ºC and optimized values were obtained. The first-order kinetic model was used to discuss the results. The UV-Vis spectra changes showed that the azo dye sample, collected after 6 h irradiation, was 98% decolorized while the residual total carbon was 97.9% degraded, indicating simultaneous photodecolorization and degradation.
Resumo:
This work presents a study on the separation of Fe(III) and Ti(IV) from sulfuric acid leaching solutions of ilmenite (FeTiO3) using liquid-liquid extraction with D2EHPA in n-dodecane as extracting agent. The distribution coefficients (K D) of the elements related to free acidity and concentration of Fe(III) and Ti(IV) were determined. Free acidity was changed from 3x10-2 to 11.88 mol L-1 and D2EHPA concentration was fixed at 1.5 mol L-1. Recovery of final products as well as recycling of wastes generated in the process were also investigated. The LLE process as a feasible alternative to obtain high-purity TiO2.
Resumo:
A HPLC method was developed to quantify thymine and thymidine impurities in stavudine bulk drug. The separation was carried out in isocratic mode using methanol/water (20:80) as mobile phase, a C18 column and UV detection at 266 nm. The method provided selectivity based on peak purities and resolution among peaks. It was linear over the range of 0.5-5.0 µg/mL. The quantitation limits were 0.021 µg/mL for thymine and 0.134 µg/mL for thymidine. The average accuracies of three concentrations ranged from 97.06 to 102.61% and precision was close to 1%. The method showed robustness, remaining unaffected by deliberate variations in relevant parameters.
Resumo:
This work focuses in optimizing setup for obtaining TiO2 thin films by polymeric precursor route due to its advantages on stoichiometric and morphological control. Precursor stoichiometry, synthesis pH, solids concentration and rotation speed at deposition were optimized evaluating thin films morphology and thickness. Thermogravimetry and RMN were applied for precursor's characterization and AFM, XRD and ellipsometry for thin films evaluation. Results showed successful attainment of homogeneous nanocrystalline anatase TiO2 thin films with outstanding control over morphological characteristics, mean grain size of 17 nm, packing densities between 57 and 75%, estimated surface areas of 90 m²/g and monolayers thickness within 20 and 128 nm.
Resumo:
Bisphenol A (BPA) is a monomer used in epoxy resin and polycarbonate manufacture. This molecule is considered as an endocrine disruptor that causes different diseases. The human exposition to this non biodegrable substance is increasing in the time; in particular, water is contaminated by industrial remainder flow. In this article heterogeneous photo degradation of a solution of BPA in water solution using a catalytic photo reactor with UV light and titanium dioxide (TiO2) was evaluated. High performance liquid chromatography (HPLC) was used to analyze the photo degradation of BPA solutions. The influence of titanium dioxide amount, BPA concentration, reaction temperature and the catalyst state like suspension and immobilized were also determinated. The highest elimination of BPA was 83.2%, in 240 min, beginning with 0.05 mM of BPA and 100 mg/L of TiO2 in suspension.
Resumo:
Magnetic soils forming on tuffite of the region of Alto Paranaíba, Minas Gerais, Brazil, usually contain iron-rich spinels exceptionally rich in magnesium and titanium. In this work, samples of the magnetically separated portion from the sand fraction of a Brunizém (Chernossolo) and from its mother-rock material were analyzed with synchrotron X-ray diffraction and 57Fe-Mössbauer spectroscopy. Magnesioferite (MgFe2O4) and maghemite (its pure non-stoichiometric spinel structure, Fe8/3 ⊕ 1/3 O4, where ⊕ = cation vacancy, corresponds to γFe2O3) were the magnetic iron oxides so identified. Basing on these data, a consistent chemical-mineralogical model is proposed for the main transformation steps involving these iron oxides in the pedosystem, starting on magnesioferrite to finally render hematite (αFe2O3), passing through maghemite as an intermediate specie.
Resumo:
Advanced oxidative processes (AOPs) are based on chemical processes that can generate free radicals, such as hydroxyl radicals (.OH) which are strong, non-selective oxidant species that react with the vast majority of organic compounds. Nanostructured semiconductors, especially titanium dioxide (TiO2) in the anatase phase, are well-established photocatalysts for this process, which have proved to be useful in the degradation of dyes, pesticides and other contaminants. Research in different strategies for the synthesis of nanostructured semiconductors, with particular characteristic is currently a topic of interest in many studies. Thus, this paper presents a review about various synthesis strategies of nanostructured photocatalysts.
Resumo:
The tribocorrosion behavior of Ti6Al4V alloy was investigated in a Phosphate Buffered Saline (PBS) solution by a reciprocating wear, using alumina ball as the counterface material, at different normal forces and sliding velocities. Dry wear experiments were performed in order to compare with the tribocorrosion experiments at open circuit potential and under anodic polarization. Dry wear induced a superior damage on the counterface, forming larger and shallower wear tracks compared with those experiments performed in PBS solution. The anodic current was increased by wear; however the volume of oxidized metal in tribocorrosion experiments correspond to a relative low percentage of the wear track volume.
Resumo:
The main goal of this paper was to study the degradation of synthetic dyes using photoelectrocatalytic properties of particulate films of TiO2 supported on plates of titanium and stimulated by UV-Vis radiation. The dyes decolorizations were measured using spectrophotometric methods to verify which the conditions on Ti/TiO2 electrode was the best for the photoelectrodegradation of them. The results showed that decolorization rates were higher than 90% during a period of 270 min. FT-IR spectroscopy showed that intermediate substances were formed after the decolorization and N=N group/aromatic structures were preserved independently of the specific structure of the dyes.
Resumo:
Titanium dioxide is an efficient photocatalist, being possible to improve its efficiency with better charge separation which occurs when it is coupled with other semiconductors. Nanometric particles of ZnO were used to impregnate TiO2 P25 in order to optimize its photocatalytic properties. ZnO/TiO2 composites were obtained at different proportions and were characterized by X-ray diffraction (XRD), micro-Raman and diffuse reflectance spectroscopies, measurement of surface area (BET) and scanning electron microscopy (SEM). Raman spectroscopy data revealed a change on the TiO2 surface due the presence of ZnO which was observed by an enlargement of TiO2 peaks and a change on the relation rate between anatase and rutile phases of the composites. The photodegradation of azo-dye Drimaren red revealed better efficiency for ZnO/TiO2 3% nanocomposite and for ZnO pure.
Resumo:
A spectrophotometric method was proposed for Ni(II) determination in alloys using a dopa-semiquinone (L-1) to form [Ni(II)(L1-)3]1-, ε = 9.3 x 10³ L mol-1 cm-1. The optimal conditions for the determination were: wavelength 590 nm, temperature 25 °C, reaction time 45 min and pH 7.5. The Beer's law was obeyed for nickel from 3.33 x 10-5 to 1.78 x 10-4 mol L-1. The method was applied to complex samples, such as inox, nickel-titanium and cobalt-chromium alloys. A study of the potential interferents revealed that Mn was the major interferent. The limit of detection and quantification were 2.88 x 10-5 mol L-1 and 3.06 x 10-5 mol L-1, respectively.
Resumo:
Argentation chromatography is used to increase the selectivity of the chromatographic process, chiefly in the resolution of complex mixtures of nonpolar substances. Although efficient, this technique generates residues containing heavy metal which makes its discarding through common procedures impracticable. In the present work a simple method for recycling of silica, and also silver, from argentation chromatography is described. This procedure uses initially a treatment of H2O2/HNO3, with subsequent treatment with H2O2/H2SO4 , allowing an efficient recycling of both components. This methodology is simple, costless, removes impurities efficiently, and does not modify retention parameters nor specific surface in a significant way.