43 resultados para Stabilized-zirconia
Resumo:
In this work, the preparation and characterization of materials such as zirconium oxide (ZrO2) and phosphotungstic acid promoted zirconium oxide (ZrO2-H3PW12O40) is presented. Physico-chemical characterization results showed that addition of H3PW12O40 acted as both a textural and chemical promoter of zirconium oxide. The incorporation of phosphotungstic acid into the ZrO2 matrix delayed the sintering of the material and stabilized ZrO2 in the tetragonal phase. ZrO2 acidity was also enhanced, developing strong acid sites on its surface. The Pt/ZrO2-H3PW12O40 catalyst was active for n-pentane isomerization at 250 °C, exhibiting high selectivity to iso-pentane (95%). This result is probably due to its suitable acidity.
Resumo:
Nanoemulsions composed of a medium-chain triglyceride oil core stabilized by rapeseed or sunflower lecithins were prepared by spontaneous emulsification and high-pressure homogenization. These nanoemulsions are compared with formulations stabilized by egg lecithin. Nanoemulsions obtained by high-pressure homogenization display larger droplet size (230 to 440 nm) compared with those obtained by spontaneous emulsification (190 to 310 nm). The zeta potentials of the emulsions were negative and below -25 mV. Zeta potential inversion occurred between pH 3.0 and 4.0. The results demonstrate the feasibility of preparing lipid emulsions comprising rapeseed or sunflower lecithins by spontaneous emulsification and high-pressure homogenization.
Resumo:
Ni-Co/Al2O3-MgO-ZrO2 nanocatalyst with utilization of two different zirconia precursors, namely, zirconyl nitrate hydrate (ZNH) and zirconyl nitrate solution (ZNS), was synthesized via the sol-gel method. The physiochemical properties of nanocatalysts were characterized by XRD, FESEM, EDX, BET and FTIR analyses and employed for syngas production from CO2-reforming of CH4. XRD patterns, exhibiting proper crystalline structure and homogeneous dispersion of active phase for the nanocatalyst ZNS precursor employed (NCAMZ-ZNS). FESEM and BET results of NCAMZ-ZNS presented more uniform morphology and smaller particle size and consequently higher surface areas. In addition, average particle size of NCAMZ-ZNS was 15.7 nm, which is close to the critical size for Ni-Co catalysts to avoid carbon formation. Moreover, FESEM analysis indicated both prepared samples were nanoscale. EDX analysis confirmed the existence of various elements used and also supported the statements made in the XRD and FESEM analyses regarding dispersion. Based on the excellent physiochemical properties, NCAMZ-ZNS exhibited the best reactant conversion across all of the evaluated temperatures, e.g. CH4 and CO2 conversions were 97.2 and 99% at 850 ºC, respectively. Furthermore, NCAMZ-ZNS demonstrated a stable yield with H2/CO close to unit value during the 1440 min stability test.
Resumo:
Zirconia was prepared by a precipitation method and calcined at 723 K, 1023 K, and 1253 K in order to obtain monoclinic zirconia. The prepared zirconia was characterized by XRD, SEM, EDX, surface area and pore size analyzer, and particle size analyzer. Monoclinic ZrO2 as a catalyst was used for the gas-phase oxidation of isopropanol to acetone in a Pyrex-glass-flow-type reactor with a temperature range of 443 K - 473 K. It was found that monoclinic ZrO2 shows remarkable catalytic activity (68%) and selectivity (100%) for the oxidation of isopropanol to acetone. This kinetic study reveals that the oxidation of isopropanol to acetone follows the L-H mechanism.
Resumo:
The objective of the present study was to evaluate the effects of industrial solid waste (whitewash mud) on geotechnical properties considering the following engineering parameters: California Bearing Ratio (CBR), Atterberg limits and Permeability test. Seven soil samples derived from Alagoinhas, Bahia - Brazil, were classified by the Transportation Research Board (TRB) system. Two were selected as having a great geotecnical potential classified as A-3 (0) and A-2-4 (0), whitewash mud contents 10%, 15%, 20% and 25% dry weight and medium compaction effort were studied in the laboratory testing program. The results indicated the soil denominated good gravel as being the most promising one, when stabilized with whitewash mud, reaching the best results with the dosage of 20 and 25% of whitewash mud.
Resumo:
This work established the adequate temperature and the period of exposition for the accelerated ageing test with diasporas of Myracrodruon urundeuva from an area of the Cerrado in the state of Mato Grosso, Brazil. Before and after the ageing, at the temperatures of 40ºC, 41ºC, 42ºC and 45ºC combined with periods of 12, 18, 24, 30 and 36 hours, the water content and germination were evaluated. For each treatment, 12g of diasporas in mini chambers with 40 mL of distilled water were submitted to the accelerated ageing test. A total of 100 diasporas, divided into four replications, in plastic boxes, on two sheets of blotting paper, in germinator at 25ºC and 8 hours of photoperiod were germinated. In all treatments the content of water of the aged diasporas was superior to 20% and this value stabilized itself between 25% and 28%, from the 18 hours of exposition. Independently of the tested periods, the ageing at the temperatures of 40ºC, 41ºC and 42ºC did not affect the germination. After the ageing at 45ºC, the germination did not differ among the periods of 12, 18 and 24 hours of exposition, but in all these periods it was inferior to the control and superior to the periods of 30 and 36 hours. In these last two periods, fungi were observed. The accelerated ageing of diasporas of Myracrodruon urundeuva should be conducted at the temperature of 45ºC, during the exposition periods of 12 to 24 hours.
Resumo:
The cassava starch industries generate a large volume of wastewater effluent that, stabilized in ponds, wastes its biogas energy and pollutes the atmosphere. To contribute with the reversion of this reality, this manipueira treatment research was developed in one phase anaerobic horizontal pilot reactor with support medium in bamboo pieces. The reactor was excavated into the ground and sealed with geomembrane in HDPE, having a volume equal to 33.6 m³ and continuous feeding by gravity. The stability indicators were pH, volatile acidity/total alkalinity ratio and biogas production. The statistical analyses were performed by a completely randomized design, with answers submitted to multivariate analysis. The organical loads in COD were 0.556; 0.670; 0.678 and 0.770 g L-1 and in volatile solids (VS) of 0.659; 0.608; 0.570 and 0.761 g L-1 for the hydraulic retention times (HRT) of 13.0; 11.5; 10.0 and 7.0 days, respectively. The reductions in COD were 88; 80; 88 and 67% and for VS of 76; 77; 65 and 61%. The biogas productions relatively to the consumed COD were 0.368; 0.795; 0.891 and 0.907 Lg-1, for the consumed VS of 0.524; 0.930; 1.757 and 0.952 Lg-1 and volumetric of 0.131; 0.330; 0.430 and 0.374 L L-1 d-1. The reactor remained stable and the bamboo pieces, in visual examination at the end of the experiment, showed to be in good physical conditions.
Resumo:
The metabolic responses of adult and young freshwater Kinosternon scorpioides turtles raised in captivity were evaluated. Two experiments were performed: a) blood metabolite changes caused by food deprivation, and b) liver and muscle glycogen and total lipid differences after fasting and refeeding. Blood glucose concentration of young animals was susceptible to food deprivation. In both groups this metabolite decreased after 30 days of fasting. Feeding for 15 days did not recover blood glucose. Total seric proteins were not affected by food deprivation. Fasting decreased blood urea nitrogen and the highest difference was found around 30 days. Uric acid increased in young animals after 60 days of fasting. Triacylglicerol decreased after 15 days of fasting and refeeding for 15 days recovered the pre-fasting levels. Free fatty acid plasma tended to increase around 15 days of fasting. Liver glycogen decreased at day 15 of fasting, being stable thereafter while muscle glycogen decreased at a slower rate. Total liver lipid stabilized after 30 days and then decreased 70% after 60 days of fasting. Muscle lipids remained stable throughout fasting. It could be concluded that fasting of Kinosternon scorpioides led to metabolic adaptations similar to the one reported from reptiles and fish.
Resumo:
The results of a numerical study of premixed Hydrogen-air flows ignition by an oblique shock wave (OSW) stabilized by a wedge are presented, in situations when initial and boundary conditions are such that transition between the initial OSW and an oblique detonation wave (ODW) is observed. More precisely, the objectives of the paper are: (i) to identify the different possible structures of the transition region that exist between the initial OSW and the resulting ODW and (ii) to evidence the effect on the ODW of an abrupt decrease of the wedge angle in such a way that the final part of the wedge surface becomes parallel to the initial flow. For such a geometrical configuration and for the initial and boundary conditions considered, the overdriven detonation supported by the initial wedge angle is found to relax towards a Chapman-Jouguet detonation in the region where the wedge surface is parallel to the initial flow. Computations are performed using an adaptive, unstructured grid, finite volume computer code previously developed for the sake of the computations of high speed, compressible flows of reactive gas mixtures. Physico-chemical properties are functions of the local mixture composition, temperature and pressure, and they are computed using the CHEMKIN-II subroutines.
Resumo:
The aim of the present study was to characterize the interactions of antagonist G (H-Arg-D-Trp-NmePhe-D-Trp-Leu-Met-NH 2)-targeted sterically stabilized liposomes with the human variant small cell lung cancer (SCLC) H82 cell line and to evaluate the antiproliferative activity of encapsulated doxorubicin against this cell line. Variant SCLC tumors are known to be more resistant to chemotherapy than classic SCLC tumors. The cellular association of antagonist G-targeted (radiolabeled) liposomes was 20-30-fold higher than that of non-targeted liposomes. Our data suggest that a maximum of 12,000 antagonist G-targeted liposomes were internalized/cell during 1-h incubation at 37ºC. Confocal microscopy experiments using pyranine-containing liposomes further confirmed that receptor-mediated endocytosis occurred, specifically in the case of targeted liposomes. In any of the previously mentioned experiments, the binding and endocytosis of non-targeted liposomes have revealed to be negligible. The improved cellular association of antagonist G-targeted liposomes, relative to non-targeted liposomes, resulted in an enhanced nuclear delivery (evaluated by fluorimetry) and cytotoxicity of encapsulated doxorubicin for incubation periods as short as 2 h. For an incubation of 2 h, we report IC50 values for targeted and non-targeted liposomes containing doxorubicin of 5.7 ± 3.7 and higher than 200 µM doxorubicin, respectively. Based on the present data, we may infer that receptors for antagonist G were present in H82 tumor cells and could mediate the internalization of antagonist G-targeted liposomes and the intracellular delivery of their content. Antagonist G covalently coupled to liposomal drugs may be promising for the treatment of this aggressive and highly heterogeneous disease.
Resumo:
A novel, rapid and cost-effective trifluoperazine dihydrochloride (TFPH) decolorization assay is described for the screening of antioxidant activity. A chromogenic reaction between TFPH and potassium persulfate at low pH produces an orange-red radical cation with maximum absorption at 502 nm in its first-order derivative spectrum. TFPH was dissolved in distilled water to give a 100 mM solution. The TFPH radical cation solution was made by reacting 0.5 mL of the solution with K2S2O8 (final concentration: 0.1 mM) and diluting to 100 mL with 4 M H2SO4 solution. A linear inhibition of color production was observed with linearly increasing amounts of antioxidants, with correlation coefficients (R²) ranging from 0.999 to 0.983. The antioxidant capacity of standard solutions of an antioxidant was evaluated by comparing with the inhibition curve using Trolox as the standard. Comparison of antioxidant capacity determined with this newly developed TFPH assay and with the well-known 2,2'-azinobis-[3-ethylbenzthiazoline-6-sulfonic acid] (ABTS)-persulfate decolorization assay indicated the efficacy and sensitivity of the procedure. The proposed assay is less expensive (costs about US$4 per 100 assays) and requires only 20 min for preparation of radical cation solution in comparison with ABTS assay, in which almost 12-16 h are required for preparation of a stable ABTS radical cation solution. The present assay has the advantage over ABTS assay that it can be used to measure the antioxidant activity of the samples, which are naturally found at a pH as low as 1, because the radical cation itself has been stabilized at low pH.
Resumo:
Experimental data and few clinical non-randomized studies have shown that inhibition of the renin-angiotensin system by angiotensin-converting enzyme (ACE) associated or not with the use of mycophenolate mofetil (MMF) could delay or even halt the progression of chronic allograft nephropathy (CAN). In this retrospective historical study, we investigated whether ACE inhibition (ACEI) associated or not with the use of MMF has the same effect in humans as in experimental studies and what factors are associated with a clinical response. A total of 160 transplant patients with biopsy-proven CAN were enrolled. Eighty-one of them were on ACE therapy (G1) and 80 on ACEI_free therapy (G2). Patients were further stratified for the use of MMF. G1 patients showed a marked decrease in proteinuria and stabilized serum creatinine with time. Five-year graft survival after CAN diagnosis was more frequent in G1 (86.9 vs 67.7%; P < 0.05). In patients on ACEI-free therapy, the use of MMF was associated with better graft survival. The use of ACEI therapy protected 79% of the patients against graft loss (OR = 0.079, 95%CI = 0.015-0.426; P = 0.003). ACEI and MMF or the use of MMF alone after CAN diagnosis conferred protection against graft loss. This finding is well correlated with experimental studies in which ACEI and MMF interrupt the progression of chronic allograft dysfunction and injury. The use of ACEI alone or in combination with MMF significantly reduced proteinuria and stabilized serum creatinine, consequently improving renal allograft survival.
Resumo:
The Graphite furnace atomic absorption spectrometry (GF AAS) was the technique chosen by the inorganic contamination laboratory (INCQ/ FIOCRUZ) to be validated and applied in routine analysis for arsenic detection and quantification. The selectivity, linearity, sensibility, detection, and quantification limits besides accuracy and precision parameters were studied and optimized under Stabilized Temperature Platform Furnace (STPF) conditions. The limit of detection obtained was 0.13 µg.L-1 and the limit of quantification was 1.04 µg.L-1, with an average precision, for total arsenic, less than 15% and an accuracy of 96%. To quantify the chemical species As(III) and As(V), an ion-exchange resin (Dowex 1X8, Cl- form) was used and the physical-chemical parameters were optimized resulting in a recuperation of 98% of As(III) and of 90% of As(V). The method was applied to groundwater, mineral water, and hemodialysis purified water samples. All results obtained were lower than the maximum limit values established by the legal Brazilian regulations, in effect, 50, 10, and 5 µg.L-1 para As total, As(III) e As(V), respectively. All results were statistically evaluated.