102 resultados para Simultaneous optimization
Resumo:
In this study, different solutions to extract vitamin C were tested. High-performance liquid chromatography was chosen and the conditions were based on isocratic elution in reverse phase column. Dehydroascorbic acid was determined indirectly after its reduction using dithiothreitol. The use of metaphosphoric acid to stabilize the vitamin C was shown to be required and it was necessary to neutralize the pH of the extract to apply dithiothreitol. The average recovery was 90% in collard and tomato samples. The presence of oil did not interfere in extraction and the methodology can be used to analyze stir fried vegetables.
Resumo:
The carrot leaf dehydration conditions in air circulation oven were optimized through response surface methodology (RSM) for minimizing the degradation of polyunsaturated fatty acids, particularly alpha-linolenic (LNA, 18:3n-3). The optimized leaf drying time and temperature were 43 h and 70 ºC, respectively. The fatty acids (FA) were investigated using gas chromatography equipped with a flame ionization detector and fused silica capillary column; FA were identified with standards and based on equivalent-chain-length. LNA and other FA were quantified against C21:0 internal standard. After dehydration, the amount of LNA, quantified in mg/100 g dry matter of dehydrated carrot leaves, were 984 mg.
Resumo:
Signal processing methods based on the combined use of the continuous wavelet transform (CWT) and zero-crossing technique were applied to the simultaneous spectrophotometric determination of perindopril (PER) and indapamide (IND) in tablets. These signal processing methods do not require any priory separation step. Initially, various wavelet families were tested to identify the optimum signal processing giving the best recovery results. From this procedure, the Haar and Biorthogonal1.5 continuous wavelet transform (HAAR-CWT and BIOR1.5-CWT, respectively) were found suitable for the analysis of the related compounds. After transformation of the absorbance vectors by using HAAR-CWT and BIOR1.5-CWT, the CWT-coefficients were drawn as a graph versus wavelength and then the HAAR-CWT and BIOR1.5-CWT spectra were obtained. Calibration graphs for PER and IND were obtained by measuring the CWT amplitudes at 231.1 and 291.0 nm in the HAAR-CWT spectra and at 228.5 and 246.8 nm in BIOR1.5-CWT spectra, respectively. In order to compare the performance of HAAR-CWT and BIOR1.5-CWT approaches, derivative spectrophotometric (DS) method and HPLC as comparison methods, were applied to the PER-IND samples. In this DS method, first derivative absorbance values at 221.6 for PER and 282.7 nm for IND were used to obtain the calibration graphs. The validation of the CWT and DS signal processing methods was carried out by using the recovery study and standard addition technique. In the following step, these methods were successfully applied to the commercial tablets containing PER and IND compounds and good accuracy and precision were reported for the experimental results obtained by all proposed signal processing methods.
Resumo:
The use of carbon paste electrodes (CPE) of mineral sulfides can be useful for electrochemical studies to overcome problems by using massive ones. Using CPE-chalcopyrite some variables were electrochemically evaluated. These variables were: (i) the atmosphere of preparation (air or argon) of CPE and elapsed time till its use; (ii) scan rate for voltammetric measurements and (iii) chalcopyrite concentration in the CPE. Based on cyclic voltammetry, open-circuit potential and electrochemical impedance results the recommendations are: oxygen-free atmosphere to prepare and kept the CPE until around two ours, scan rates from 10 to 40 mV s-1, and chalcopyrite concentrations > 20%.
Resumo:
An isocratic reversed phase high-performance liquid chromatographic (RP-HPLC) method has been developed for the simultaneous determination of gemifloxacin and diuretics (hydrochlorothiazide and furosemide) in bulk, dosage formulations and human serum at 232 nm. Chromatographic separation was achieved on Purospher Start C18 (250 mm x 4.6 mm, 5 µm) column using mobile phase, methanol: water: acetonitrile (70:25:5 v/v/v) adjusted to pH 3.0 via phosphoric acid 85% having flow rate of 0.8 mL min -1 at room temperature. Calibration curves were linear over range of 0.5-10 µg mL -1 with a correlation coefficient ± 0.999. LOD and LOQ were in the ranges of 0.75-2.56 µg mL -1. Intra and inter-run precision and accuracy results were 98.26 to 100.9.
Resumo:
A simple liquid chromatographic method was optimized for the quantitative determination of terbinafine in pharmaceutical hydroalcoholic solutions and tablets, and was also employed for a tablet dissolution test. The analysis was carried out using a RP-C18 (250 mm × 4.6 mm, 5 μm) Vertical® column, UV-Vis detection at 254 nm, and a methanol-water (95:5, v/v) mobile phase at a flow-rate of 1.2 mL min-1. Method validation investigated parameters such as linearity, precision, accuracy, robustness and specificity, which gave results within the acceptable range. The tablets dissolution was quite fast: 80% of the drug was dissolved within 15 min.
Resumo:
Simultaneous determination of moxifloxacin (MOX) and H2-antagonists was first time developed in bulk and formulations. Purospher STAR C18 (250 x 4.6 mm, 5 μm) column was used. The mobile phase (methanol: water: ACN, 60:45:5 v/v/v, pH 2.7) was delivered at a flow rate of 1.0 mL min-1, eluent was monitored at 236, 270 and 310 nm for cimetidine, famotidine and ranitidine, respectively. The proposed method is specific, accurate (98-103%), precise (intra-day and inter-day variation 0.098-1.970%) and linear (r>0.998). The LOD and LOQ were 0.006-0.018 and 0.019-0.005 μg mL-1, respectively. The statistical parameters were applied to verify the results. The method is applicable to routine analysis of formulations and interaction of MOX with H2-antagonist.
Resumo:
The simultaneous determination of two or more active components in pharmaceutical preparations, without previous chemical separation, is a common analytical problem. Published works describe the determination of AZT and 3TC separately, as raw material or in different pharmaceutical preparations. In this work, a method using UV spectroscopy and multivariate calibration is described for the simultaneous measurement of 3TC and AZT in fixed dose combinations. The methodology was validated and applied to determine the AZT+3TC contents in tablets from five different manufacturers, as well as their dissolution profile. The results obtained employing the proposed methodology was similar to methods using first derivative technique and HPLC.
Resumo:
A method using Liquid Phase Microextraction for simultaneous detection of citalopram (CIT), paroxetine (PAR) and fluoxetine (FLU), using venlafaxine as internal standard, in plasma by high performance liquid chromatography with fluorescence detection was developed. The linearity was evaluated between 5.0 and 500 ng mL-1 (r > 0.99) and the limit of quantification was 2.0, 3.0 and 5.0 ng mL-1 for CIT, PAR and FLU, respectively. Therefore, it can be applied to therapeutic drug monitoring, pharmacokinetics or bioavailability studies and its advantages are that it necessary relatively inexpensive equipment and sample preparation techniques.
Resumo:
This work applied a 2² factorial design to the optimization of the extraction of seven elements (calcium, magnesium, potassium, iron, zinc, copper and manganese) in brachiaria leaves, determined by flame atomic absorption spectrometry. The factors sample mass and digestion type were evaluated at two levels: 200/500 mg, and dry/wet, respectively. Principal component analysis allowed simultaneous discrimination of all the significant effects in one biplot. Wet digestion and mass of 200 mg were considered the best conditions. The decrease of 60% in sample mass allowed to save costs and reagents. The method was validated through the estimation of figures of merit.
Resumo:
In the proposed method, carbon tetrachloride and ethanol were used as extraction and dispersive solvents. Several factors that may be affected on the extraction process, such as extraction solvent, disperser solvent, the volume of extraction and disperser solvent, pH of the aqueous solution and extraction time were optimized. Under the optimal conditions, linearity was maintained between 1.0 ng mL-1 to 1.5 mg mL-1 for zinc and 1.0 ng mL-1 to 0.4 mg mL-1 for cadmium. The proposed method has been applied for determination of trace amount of zinc and cadmium in standard and water samples with satisfactory results.
Resumo:
The influence of Anatasa/Rutile ratio on TiO2 films, grown by electrophoretic deposition was studied in the photoassisted electrolytic copper ions removal from cyanide solutions. The proper dispersant dosage allowing the simultaneous electrophoretic deposition of Anatase and Rutile was chosen based on electrokinetic measurements; evidenced by the XRD spectra of the formed films. The evaluation of films photoassisted electrolytic copper ion removal showeds that it is possible to enhance the activity of Anatase films by adding some Rutile exploiting the synergetic interaction between these two materials, achieve by its proper deposition.
Resumo:
A selective and accurate stability-indicating gradient reverse phase ultra performance liquid chromatographic method has been developed and validated for the simultaneous determination of nizatidine, methylparaben and propylparaben in pharmaceutical oral liquid formulation. The separation was achieved on Acquity UPLC TM HSS T3 1.8 µm column by using mobile phase containing a gradient mixture of solvent A (0.02 Mol L-1 KH2PO4, pH 7.5) and B (60:40 v/v mixture of methanol and acetonitrile) at flow rate of 0.4 mL min-1. Drug product was exposed to the stress conditions of oxidative, acid, base, hydrolytic, thermal and photolytic degradation. The developed method was validated as per international ICH guidelines with respect to specificity, linearity, accuracy, precision and robustness.
Resumo:
A rapid and sensitive method using high performance liquid chromatography has been developed and validated for the simultaneous determination of non-steroidal anti-inflammatory drugs (NSAIDs) in pharmaceutical formulations and human serum. Six NSAIDs including: naproxen sodium, diclofenac sodium, meloxicam, flurbiprofen, tiaprofenic and mefenamic acid were analyzed simultaneously in presence of ibuprofen as internal standard on Mediterranea C18 (5 µm, 250 x 0.46 mm) column. Mobile phase comprised of methanol: acetonitrile: H2O (60:20:20, v/v; pH 3.35) and pumped at a flow rate of 1 mL min-1 using 265 nm UV detection. The method was linear over a concentration range of 0.25-50 µg mL-1 (r² = 0.9999).
Resumo:
A simple, RP-HPLC method was established for determining moxifloxacin and ketorolac in pharmaceutical formulations. Moxifloxacin, ketorolac and their degradation products were separated using C8 column with methanol and phosphate buffer pH 3.0 (55:45 v/v) as the mobile phase. Detection was performed at 243 nm using a diode array detector. The method was validated using ICH guidelines and was linear in the range 20-140 µg mL-1 for both analytes. Good separation of both the analytes and their degradation products was achieved using this method. The developed method can be applied successfully for the determination of moxifloxacin and ketorolac.