49 resultados para Rainfall indices
Resumo:
The cropping system influences the interception of water by plants, water storage in depressions on the soil surface, water infiltration into the soil and runoff. The aim of this study was to quantify some hydrological processes under no tillage cropping systems at the edge of a slope, in 2009 and 2010, in a Humic Dystrudept soil, with the following treatments: corn, soybeans, and common beans alone; and intercropped corn and common bean. Treatments consisted of four simulated rainfall tests at different times, with a planned intensity of 64 mm h-1 and 90 min duration. The first test was applied 18 days after sowing, and the others at 39, 75 and 120 days after the first test. Different times of the simulated rainfall and stages of the crop cycle affected soil water content prior to the rain, and the time runoff began and its peak flow and, thus, the surface hydrological processes. The depth of the runoff and the depth of the water intercepted by the crop + soil infiltration + soil surface storage were affected by the crop systems and the rainfall applied at different times. The corn crop was the most effective treatment for controlling runoff, with a water loss ratio of 0.38, equivalent to 75 % of the water loss ratio exhibited by common bean (0.51), the least effective treatment in relation to the others. Total water loss by runoff decreased linearly with an increase in the time that runoff began, regardless of the treatment; however, soil water content on the gravimetric basis increased linearly from the beginning to the end of the rainfall.
Resumo:
The objective of this study was to establish critical values of the N indices, namely soil-plant analysis development (SPAD), petiole sap N-NO3 and organic N in the tomato leaf adjacent to the first cluster (LAC), under soil and nutrient solution conditions, determined by different statistical approaches. Two experiments were conducted in randomized complete block design with four repli-cations. Tomato plants were grown in soil, in 3 L pot, with five N rates (0, 100, 200, 400 and 800 mg kg-1) and in solution at N rates of 0, 4, 8, 12 and 16 mmol L-1. Experiments in nutrient solution and soil were finished at thirty seven and forty two days after transplanting, respectively. At those times, SPAD index and petiole sap N-NO3 were evaluated in the LAC. Then, plants were harvested, separated in leaves and stem, dried at 70ºC, ground and weighted. The organic N was determined in LAC dry matter. Three statistical procedures were used to calculate critical N values. There were accentuated discrepancies for critical values of N indices obtained with plants grown in soil and nutrient solution as well as for different statistical procedures. Critical values of nitrogen indices at all situations are presented.
Resumo:
This study aimed to establish relationships between maize yield and rainfall on different temporal and spatial scales, in order to provide a basis for crop monitoring and modelling. A 16-year series of maize yield and daily rainfall from 11 municipalities and micro-regions of Rio Grande do Sul State was used. Correlation and regression analyses were used to determine associations between crop yield and rainfall for the entire crop cycle, from tasseling to 30 days after, and from 5 days before tasseling to 40 days after. Close relationships between maize yield and rainfall were found, particularly during the reproductive period (45-day period comprising the flowering and grain filling). Relationships were closer on a regional scale than at smaller scales. Implications of the crop-rainfall relationships for crop modelling are discussed.
Resumo:
Based on a specially created mass spectral database utilizing 23 tetradecenyl and 22 hexadecenyl acetate standards along with Kóvats retention indices obtained on a very polar stationary phase [poly (biscyanopropyl siloxane)] (SP 2340), (Z)-9-hexadecenyl acetate, (Z)-11-hexadecenyl acetate and (E)-8-hexadecenyl acetate were identified in active pheromone extracts of Elasmopalpus lignosellus. This identification was more efficient than our previous study using gas chromatography/mass spectrometry with a dimethyl disulfide derivative where we could only identify the first two acetates. The acetate composition of the pheromone gland differed from region to region in Brazil and from that from the Tifton (GA, USA) population, suggesting polymorphism or a different sub-species.
Resumo:
Genetic algorithm and partial least square (GA-PLS) and kernel PLS (GA-KPLS) techniques were used to investigate the correlation between retention indices (RI) and descriptors for 117 diverse compounds in essential oils from 5 Pimpinella species gathered from central Turkey which were obtained by gas chromatography and gas chromatography-mass spectrometry. The square correlation coefficient leave-group-out cross validation (LGO-CV) (Q²) between experimental and predicted RI for training set by GA-PLS and GA-KPLS was 0.940 and 0.963, respectively. This indicates that GA-KPLS can be used as an alternative modeling tool for quantitative structure-retention relationship (QSRR) studies.
Resumo:
The black spot of citrus (Citrus sp.) is caused by Guignardia citricarpa with ascospore production depending on temperature, leaf wetness, and rainfall. The number of ascospores produced was monitored using a spore trap and climatic factors were recorded using an automated meteorological station of 'Natal' and 'Valencia' sweet orange (Citrus sinensis) orchards in Mogi Guaçu in the state of São Paulo, Brazil, from November 2000 to March 2001. The fruits were bagged to prevent infection and the bags removed from different sets of fruit for one week during each of the 18 weeks of the season in both orchards. Ascospores were produced during the entire experimental period, from spring through summer, primarily after rain events. In both orchards, ascospore production reached a peak in January and February. Ascospore production was related to leaf wetness only in the Natal orange orchard but was not related to total rainfall or temperature in either orchard. Disease was most severe on fruit exposed the 7th, 8th, and 13th weeks after beginning the experiment in both cultivars as well as after the 16th week for 'Natal'. There was a strong relationship between disease severity and total rainfall for both orchards and a weak correlation between temperature and severity in the 'Natal' block only. There was no relationship between severity and leaf wetness or ascospore numbers.
Resumo:
ABSTRACT Samples of Araucaria angustifolia were collected at Fazenda Rio Grande, Paraná, Brazil (25°39'S 49 18'O) in January 2011. The 32 samples from 8 trees were subjected to treatments following dendrochronological techniques. The cores were measured and dated using optical and computational methodology, and then standardized to obtain a growth-ring time series, which considers the 1907-2009 time range and represents Fazenda Rio Grande. Tree-ring indices were analyzed and correlated to temperature and precipitation averages from the 1961-2009 range. This procedure aimed to study and understand the influence of the local climate on the plant growth and if this influence can be quantified. A. angustifolia trees produce visible annual growth rings, and their earlywood and latewood are clearly defined. The present study shows that A. angustifolia is sensitive to climate variables (e.g., low temperatures in wintertime tend to stop the growth rate). The correlation between tree rings and monthly precipitation series showed a common trend, making it possible to estimate the seasonal rainfall behavior for the entire 1907-2009 range.
Resumo:
Among the building materials used in rural facilities, roofs are noteworthy for being largely responsible for thermal comfort, influencing the thermal balance within the shelter. This study aimed to evaluate the influence of roof on the Enthalpy (H), Thermal Load of Radiation (TLR), and Black Globe Temperature and Humidity Index (BGHI) in individual shelters for dairy calves. The design was completely randomized with three treatments: Z - zinc tile, AC - asbestos-cement tile and ACW - asbestos-cement tile painted white on the upper side. The averages were compared by the Scott Knott test at 1% probability. The results showed no statistical difference between treatments (P<0.01) and the external environment for H. For TLR, there was statistical difference among all treatments, where ACW showed the lowest TLR, 489.28 W m-2, followed by AC with 506.72 W m-2 and Z with the highest TLR, 523.55 W m-2. For BGHI, the lowest values were observed for ACW (76.8) and AC (77.4), differing significantly from Z, which obtained the highest value (81.6). The tiles with white paint on the upper side promoted the lowest TLR and the lowest BGHI, favoring the thermal environment in the shelter.
Resumo:
Information about rainfall erosivity is important during soil and water conservation planning. Thus, the spatial variability of rainfall erosivity of the state Mato Grosso do Sul was analyzed using ordinary kriging interpolation. For this, three pluviograph stations were used to obtain the regression equations between the erosivity index and the rainfall coefficient EI30. The equations obtained were applied to 109 pluviometric stations, resulting in EI30 values. These values were analyzed from geostatistical technique, which can be divided into: descriptive statistics, adjust to semivariogram, cross-validation process and implementation of ordinary kriging to generate the erosivity map.Highest erosivity values were found in central and northeast regions of the State, while the lowest values were observed in the southern region. In addition, high annual precipitation values not necessarily produce higher erosivity values.
Resumo:
The Artificial Neural Networks (ANNs) are mathematical models method capable of estimating non-linear response plans. The advantage of these models is to present different responses of the statistical models. Thus, the objective of this study was to develop and to test ANNs for estimating rainfall erosivity index (EI30) as a function of the geographical location for the state of Rio de Janeiro, Brazil and generating a thematic visualization map. The characteristics of latitude, longitude e altitude using ANNs were acceptable to estimating EI30 and allowing visualization of the space variability of EI30. Thus, ANN is a potential option for the estimate of climatic variables in substitution to the traditional methods of interpolation.
Resumo:
This study aimed to describe the probabilistic structure of the annual series of extreme daily rainfall (Preabs), available from the weather station of Ubatuba, State of São Paulo, Brazil (1935-2009), by using the general distribution of extreme value (GEV). The autocorrelation function, the Mann-Kendall test, and the wavelet analysis were used in order to evaluate the presence of serial correlations, trends, and periodical components. Considering the results obtained using these three statistical methods, it was possible to assume the hypothesis that this temporal series is free from persistence, trends, and periodicals components. Based on quantitative and qualitative adhesion tests, it was found that the GEV may be used in order to quantify the probabilities of the Preabs data. The best results of GEV were obtained when the parameters of this function were estimated using the method of maximum likelihood. The method of L-moments has also shown satisfactory results.
Resumo:
This research aims at studying spatial autocorrelation of Landsat/TM based on normalized difference vegetation index (NDVI) and green vegetation index (GVI) of soybean of the western region of the State of Paraná. The images were collected during the 2004/2005 crop season. The data were grouped into five vegetation index classes of equal amplitude, to create a temporal map of soybean within the crop cycle. Moran I and Local Indicators of Spatial Autocorrelation (LISA) indices were applied to study the spatial correlation at the global and local levels, respectively. According to these indices, it was possible to understand the municipality-based profiles of tillage as well as to identify different sowing periods, providing important information to producers who use soybean yield data in their planning.
Resumo:
The climate variability between the growth and harvesting of sugar cane is very important because it directly affects yield. The MODIS sensor has characteristics like spatial and temporal resolution that can be applied to monitoring of vegetative vigor variability in the land surface and then, temporal profiles generation. Agro meteorological data from ECMWF model are free and easy to access and have a good representation of reality. In this study, we used the period between sugar cane growth and harvest in the state of Sao Paulo, Brazil, from temporal profiles selecting of NDVI behavior. For each period the precipitation, evapotranspiration, global radiation, length (days) and degree-days were accumulated. The periods were presented in a map format on MODIS spatial resolution of 250 meters. The results showed the spatial variability of climate variables and the relationship to the reality presented by official data.
Resumo:
The aim of this study was to generate maps of intense rainfall equation parameters using interpolated maximum intense rainfall data. The study area comprised Espírito Santo State, Brazil. A total of 59 intense rainfall equations were used to interpolate maximum intense rainfall, with a 1 x 1 km spatial resolution. Maximum intense rainfall was interpolated considering recurrence of 2; 5; 10; 20; 50 and 100 years, and duration of 10; 20; 30; 40; 50; 60; 120; 240; 360; 420; 660; 720; 900; 1,140; 1,380 and 1,440 minutes, resulting in 96 maps of maximum intense rainfall. The used interpolators were inverse distance weighting and ordinary kriging, for which significance level (p-value) and coefficient of determination (R²) were evaluated for the cross-validation data, choosing the method that presented better R² to generate maps. Finally, maps of maximum intense precipitation were used to estimate, cell by cell, the intense rainfall equation parameters. In comparison with literature data, the mean percentage error of estimated intense rainfall equations was 13.8%. Maps of spatialized parameters, obtained in this study, are of simple use; once they are georeferenced, they may be imported into any geographic information system to be used for a specific area of interest.
Resumo:
Due to the lack of information concerning maximum rainfall equations for most locations in Mato Grosso do Sul State, the alternative for carrying out hydraulic work projects has been information from meteorological stations closest to the location in which the project is carried out. Alternative methods, such as 24 hours rain disaggregation method from rainfall data due to greater availability of stations and longer observations can work. Based on this approach, the objective of this study was to estimate maximum rainfall equations for Mato Grosso do Sul State by adjusting the 24 hours rain disaggregation method, depending on data obtained from rain gauge stations from Dourado and Campo Grande. For this purpose, data consisting of 105 rainfall stations were used, which are available in the ANA (Water Resources Management National Agency) database. Based on the results we concluded: the intense rainfall equations obtained by pluviogram analysis showed determination coefficient above 99%; and the performance of 24 hours rain disaggregation method was classified as excellent, based on relative average error WILMOTT concordance index (1982).