72 resultados para NITRO-N-NITROSOGUANIDINE
Resumo:
Rutheniumporphyrins, especially with several nitro groups in b-positions, were used in the cyclohexane oxidation in the presence of iodosylbenzene, hydrogen peroxide and sodium hypochlorite as oxygen donors, under mild conditions. The beta-polynitrated complexes were able to promote the catalytic cyclohexane oxidation. They show an exceptionally high catalytic efficiency and resistance to attack by strong oxidizing agents. The cyclohexane oxidation was monitored by gas chromatography and the results showed that the beta-polynitrated rutheniumporphyrins are better catalysts when compared to other complexes not beta-polynitrated. In all cases, the 2-phenylsubstituted complexes were more efficient than 4-phenylsubstituted complexes. The importance of the ortho effect to oxidation was shown.
Resumo:
Electrocatalytic hydrogenation (HEC) may be compared to catalytic hydrogenation (HC). The difference between these methods is the hydrogen source: HC needs a hydrogen gas supply; HEC needs a source of protons (solvent) to be reduced at a cathode surface. HEC has presented interesting advances in the last decades due to investigation of the influence of the supporting electrolyte, co-solvent, surfactant, presence of inert gas and the composition of the electrode on the reaction. Several classes of organic compounds have been hydrogenated through HEC: olefins, ketones, aldehydes, aromatics, polyaromatics and nitro-compounds. This paper shows some details about the HEC which may be regarded as a promising technique for the hydrogenation of organic compounds both in industrial processes and in laboratories.
Resumo:
The synthesis and physico-chemical properties of new 6-acetylamino or 6-benzoyl-amino 2-benzylidene-4-methyl-4H-benzo[1,4]thiazin-3-ones and 6-benzoylamino or 6-nitro 2-benzylidene-4H-benzo[1,4]thiazin-3-ones are described. These benzylidene benzothiazine compounds were prepared by the Knoevenagel condensation with benzaldehydes. The configurations and conformations of benzylidene benzothiazine derivatives were optimised using the semi-empirical method AM1.
Resumo:
A tandem syn-selective conjugate addition - Nef reaction was observed when phenylnitromethane and oxygenated derivatives were allowed to react with an enoate derived from D-mannitol at rt in the presence of TBAF or DBU. While nitro-adducts predominate after 4h of reaction, the corresponding ketones were the main products after 12-24h of reaction. The Nef reaction occurred without racemization of the stereogenic center generated in the conjugate addition step.
Resumo:
Nitrocompounds are bioactive molecules used as antibacterial, antiparasitic and antitumoral agents. In the past of years, these molecules have been broadly studied in several fields, such as medicinal chemistry, organic chemistry, biochemical, toxicology and electrochemistry. The nitrocompounds mode of action involves the biotransformation of the nitro group, releasing intermediates in the redox process. Some of those intermediates attack enzymes, membranes and DNA, providing the basis for their biological activity and adverse effects. In this report, some aspects regarding the biological activity, mechanism of action and toxicity of nitrocompounds are explored, purposing the research of new bioactive derivatives having low toxicity.
Resumo:
Static electric dipole polarizabilities and first hyperpolarizabilites have been calculated for the title molecules and their 3' and 4'-nitro derivatives at ab-initio Hartree- Fock/6-31G(d, p) level. The influence of the pivotal p vacant 3A elements (B, Al or Ga) substitution on the electrical properties of these molecules is detailed. The axial vector components of the first hyperpolarizabilities β(0) of the push-pull 4'-nitro derivatives, -18.2×10-32 esu (B), -21.1×10-32 esu (Al) and -20.8×10-32 esu (Ga) are calculated to be as much as fourfold larger then that calculated for the p-nitroaniline, a reference organic molecule for comparison for this type of molecular property.
Resumo:
This article describes the synthesis of the new (2Z)-2-(4-methoxybenzylidene)-6-nitro-4H -benzo[1,4]thiazin-3-one, (2Z)-2-(4-methoxybenzylidene)-4-methyl-6-nitro-4H-benzo[1,4]thiazin-3-one, (2Z)-6-amino-2-(4-methoxybenzylidene)-4H -benzo[1,4]thiazin-3-one, (2Z)-6-butylamino-2-(4-methoxybenzylidene)-4-methyl-4H-benzo[1,4]-thiazin-3-one and (2E)-N-alkyl-N-(2-hydroxy-5-nitrophenyl)-3-phenylacrylamides and the spectroscopic data. The arylidenebenzothiazine compounds were prepared using the Knoevenagel condensation with substituted benzaldehydes in the presence of sodium methoxide in DMF. The presence of a nitro substituent in the 4-position, water and a slightly acid reaction medium in this condensation caused the rupture of the benzothiazine ring and subsequent formation of the phenylacrylamide compounds. A crystallographic data was presented for (2E)-3-(4-bromophenyl)-N-dodecyl-N -(2-hydroxy-5-nitrophenyl) acrylamide.
Resumo:
The electrochemistry of 2,2-dimethyl-(3H)-3-(N-3'-nitrophenylamino)naphtho[1,2- b]furan-4,5-dione ([Q]-PhNO2), on mercury was investigated. The first peak is consistent with a quasi-reversible one-electron reduction of the ortho-quinone, forming [Q-]-PhNO2, while the second one, bielectronic, corresponds to the simultaneous reduction of the latter radical to a dianion and the nitro group to a nitro radical anion. The second order rate constant, k disp, for the decay of [Q-]-PhNO2 is 15.188 x 10³ ± 827 mol"1 L s"1 and the t1/2 equals 0.06 s. E¹7Ic values for [Q]-PhNO2 and its precursor, nor-β-lapachone, are similar. The ease of semiquinone generation and its stability are parameters statistically relevant in the correlation biochemical/theoretical aspects.
Resumo:
This work describes an undergraduate experiment for the synthesis of Knoevenagel adduct of Meldrum's acid with nine aromatic aldehydes, using water as the solvent, in an adaptation of a previously reported synthetic protocol. The synthesis was straightforward, requiring a period of two hours, and is suitable for undergraduate experimental courses on green chemistry. In addition, quantitative analyses of the relative reactivity of p-nitro-benzaldehyde and p-metoxi-benzaldehyde was evaluated through the competitive reaction of equimolar amounts of these aldehydes with one equivalent of Meldrum's acid, using gas chromatography to quantify the composition of the reaction mixture.
Resumo:
A simple and fast method for the determination of nimesulide (NI) using flow injection analysis with multiple-pulse amperometric (FIA-MPA) detection at a boron-doped diamond (BDD) electrode was developed. The method was based mainly on the application of a four-potential waveform, E1(det) = -0.8 V / 30 ms, E2(det) = 0.6 V / 30 ms, E3(det) = -0.4 V / 30 ms and E4(cleaning) = -0.45 V / 300 ms versus Ag/AgCl (3.0 mol L-1 KCl). NI was detected at three different electrode potentials, at which the nitro group undergoes different redox reactions. The proposed method was selective and sensitive (detection limit of 81.0 nmol L-1), and successfully applied for the determination of NI in pharmaceutical formulations, yielding similar results to those obtained by the reference method.
Resumo:
Density functional theory (DFT) calculations at the B3LYP/6-31G** theoretical level were performed for a series of guanidine-fused bicyclic skeleton derivatives C4N6H8-n(NO2)n (n = 1 - 6). The heats of formation (HOFs) were calculated by isodesmic reactions, and the detonation properties were evaluated using the Kamlet - Jacobs equations. The bond dissociation energies were also analyzed to investigate the thermal stability and sensitivity of the compounds. The results show that all of the derivatives have high positive HOFs, compound G has the highest theoretical density, and compound F1 has the highest detonation velocity and detonation pressure. Considering both the detonation properties and thermal stabilities, compounds D1 and D4 (3 nitro substituents), E1 - E6 (4 nitro substituents), and G (6 nitro substituents) can be regarded as potential candidates for high-energy density materials.
Resumo:
Physico-chemical properties of 3-chloro-2-nitrobenzoates of Co(II), Ni(II) and Cu(II) were synthesized and studied. The complexes were obtained as mono- and dihydrates with a metal ion to ligand ratio of 1 : 2. All analysed 3-chloro-2-nitrobenzoates are polycrystalline compounds with colours depending on the central ions: pink for Co(II), green for Ni(II) and blue for Cu(II) complexes. Their thermal decomposition was studied in the range of 293 523 K, because it was found that on heating in air above 523 K 3-chloro-2-nitrobenzoates decompose explosively. Hydrated complexes lose crystallization water molecules in one step and anhydrous compounds are formed. The final products of their decomposition are the oxides of the respective transition metals. From the results it appears that during dehydration process no transformation of nitro group to nitrite takes place. The solubilities of analysed complexes in water at 293 K are of the order of 10-4 10-2 mol / dm³. The magnetic moment values of Co2+, Ni2+ and Cu2+ ions in 3-chloro-2-nitrobenzoates experimentally determined at 76 303 K change from 3.67µB to 4.61µB for Co(II) complex, from 2.15µB to 2.87µB for Ni(II) 3-chloro-2-nitrobenzoate and from 0.26µB to 1.39µB for Cu(II) complex. 3-Chloro-2-nitrobenzoates of Co(II) and Ni(II) follow the Curie-Weiss law. Complex of Cu(II) forms dimer.
Resumo:
Two simple sensitive and reproducible spectrophotometric methods have been developed for the determination of metronidazole either in pure form or in their tablets. The proposed methods are based on the reduction of the nitro group to amino group of the drug. The reduction of metronidazole was carried out with zinc powder and 5 N hydrochloric acid at room temperature in methanol. The resulting amine was then subjected to a condensation reaction with aromatic aldehyde namely, vanillin and p-dimethyl amino benzaldehyde (PDAB) to yield yellow colored Schiff's bases. The formed Schiff's bases are quantified spectrophotometrically at their absorption maxima at 422 nm for vanillin and 494 nm for PDAB. Beer's law was obeyed in the concentration ranges 10 to 65 µg mL-1 and 5 to 40 µg mL-1 with a limit of detection (LOD) of 0.080 µg mL-1 and 0.090 µg mL-1 for vanillin and PDAB, respectively. The mean percentage recoveries were found to be 100.05 ± 0.37 and 99.01 ± 0.76 for the two methods respectively. The proposed methods were successfully applied to determine the metronidazole in their tablet formulations and the results compared favorably to that of reference methods. The proposed methods are recommended for quality control and routine analysis.
Resumo:
O aprimoramento dos métodos analíticos faz com que a busca por novas tecnologias rápidas, exatas e de custo reduzido estejam constantemente sendo revistas e avaliadas. O objetivo deste trabalho foi comparar três formas de extração de K (decomposição nítro-perclórica, extração com água e extração com solução diluída de HCl) de amostras da parte aérea de capim-tanzânia (Panicum maximum cv. Tanzânia) e de alfafa (Medicago sativa cv. Crioula). Os métodos de extração de K de amostras de tecido vegetal de capim-tanzânia e alfafa com solução ácida diluída ou com água apresentaram-se equivalentes ao método tradicional da decomposição nítro-perclórica e podem substituí-lo.
Resumo:
The maintenance of arterial pressure at levels adequate to perfuse the tissues is a basic requirement for the constancy of the internal environment and survival. The objective of the present review was to provide information about the basic reflex mechanisms that are responsible for the moment-to-moment regulation of the cardiovascular system. We demonstrate that this control is largely provided by the action of arterial and non-arterial reflexes that detect and correct changes in arterial pressure (baroreflex), blood volume or chemical composition (mechano- and chemosensitive cardiopulmonary reflexes), and changes in blood-gas composition (chemoreceptor reflex). The importance of the integration of these cardiovascular reflexes is well understood and it is clear that processing mainly occurs in the nucleus tractus solitarii, although the mechanism is poorly understood. There are several indications that the interactions of baroreflex, chemoreflex and Bezold-Jarisch reflex inputs, and the central nervous system control the activity of autonomic preganglionic neurons through parallel afferent and efferent pathways to achieve cardiovascular homeostasis. It is surprising that so little appears in the literature about the integration of these neural reflexes in cardiovascular function. Thus, our purpose was to review the interplay between peripheral neural reflex mechanisms of arterial blood pressure and blood volume regulation in physiological and pathophysiological states. Special emphasis is placed on the experimental model of arterial hypertension induced by N-nitro-L-arginine methyl ester (L-NAME) in which the interplay of these three reflexes is demonstrable