144 resultados para HUMORAL IMMUNE RESPONSE
Resumo:
The authors developed a comparative study of the various methods of assessment of immune response to Hepatitis B vaccine. Eighty-six health care professionals underwent a vaccination programme with three doses of plasma-derived vaccine against Hepatitis B (H-B-Vax, Merck, Sharp & Dohme) given intra-muscularly. Assessment of immune response was carried out three months after the end of the programme, by radioimmunoassay (RIA) and enzymeimmunoassay (EIA). The results showed that the semi-quantitative assessment of Anti-HBs antibodies by RIA or EIA was perfectly comparable to the reference method (quantitative determination of antibodies by RIA). In view of these findings, the authors suggest a standardization of assessment of immune response to the vaccine, thus permitting correct planning of booster doses and easier comparison between different studies
Resumo:
The interaction between specific immune response to Schistosoma mansoni and praziquantel (PZQ) was studied in mice. In mice harboring concomitant immunity, 6-day-old parasites treated with PZQ were more effectively removed than 24h treated parasites despite both had a significant worm burden reduction when compared with respective treated controls. These results show that PZQ can be effective at the skin and lung stages of parasite's development mainly acting with a established specific immune response, and particularly at the lung phase.
Resumo:
Dipetalogaster maximus embryo extracts were used to stimulate peripheral blood mononuclear cells (PBMC) and in ELISA with sera either from Trypanosoma cruzi infected or non-infected individuals. The results showed that there was significant proliferative response and high antibody titers in sera of chagasic patients.
Resumo:
The results presented in this review summarize a seirs of experiments designed to characterize the murine T cell imune response to the protozoan parasite Leishmania tropica. Enriched T cell populations and T cell clones specific for L. tropica antigens were derived from lymph nodes of primed mice and maintained in continous culture in vitro. These T lymphocytes were shown (A) to express the Lyt 1+ 3- cell surface phenotype, (B) to proliferate specifically in vitro in response to parasite antigens, together with a source of irradiated syngeneic macrophages, (C) to transfer antigen-specific delayed-type hypersensitivity (DTH) responses to normal syngeneic mice, (D) to induce specific activation of parasitized macrophages in vitro resulting in the destruction of intracellular parasites, (E) to provide specific helper activity for antibody responses in vitro in a hapten-carrier system. Protection studies using these defiened T cell populations should allow the characterization of parasite antigen(s) implicated in the induction of cellular immune responses beneficial for the host.
Resumo:
The cellular immune response to the circumsporozoite (CS) protein of plasmodium vivax of individuals from malaria-endemic areas of Brazil was studied. We examined the in vitro proliferative response of the peripheral blood mononuclear cells (PBMC) of 22 individuals when stimulated with a CS recombinant protein (rPvCS-2) and two other synthetic peptides based on the sequenceof the P. vivax CS protein. Seven of the individuals from malaria-endemic area displayed an antigen specific in vitro proliferative responseto the recombinant protein PvCS-2 and one out of 6, proliferative response to the peptide 308-320. In contrast, none of the individuals displayed a proliferative reponse when stimulated with the D/A peptide which represent some of the repeated units present in this CS protein. Our study, therefore, provides evidence for the presence, withinthe major surface antigen of P. vivax sporozoites, of epitopes capble to induce proliferation of human PBMC.
Resumo:
Previous work in our laboratory, mainly foccused the prospects of achieving resistance against Schistosoma mansoni infection with adult worm-derived antigens in the form of a soluble extract (SE). This extract obtained by incubation of living adult schistosomes in saline, contains a large number of distinct molecules and was actually shown to be a significantly protective in different outbred animals models such as Swiss mice and rabbits. It thus appeared worthwile to investigate the potencial protective activity of SE in different inbred strains of mice, known to be highly susceptible to the infection. Herein we present data showing that DBA/2 mice, once immunized with SE acquire significant levels of resistance to a S. mansoni cercarial challenge. In addition, preliminary studies on the immune system of immunized animals reveled that, injection of SE caused no general inbalance of B or T cell responses.
Resumo:
The dysregulation of the immune response by malaria parasite has been considered as a possible constraint to the effectiveness of malaria vaccination. In spite of the important role interleukin-I (IL-1) in malaria are lacking. We found that only 2 out of 35 subjectswith acute malaria showed increased levels of serum IL-1 alpha by enzyme immunoassay. To assess whether IL-1 could interfere with T- lymphocyte responses, blood mononuclear cells from patients infected with Plasmodium falciparum, P. vivax, or healthy subjects were cultured with phytohemagglutinin, and lymphocyte proliferation measured 72h later by 3H-thymidine incorporation. Our data showed that T-lymphocyte responses are depressed both in P. falciparum (10,500 ñ 2,900) and P. vivax malaria (13,000 ñ 3,300), as compared to that of healthy individuals (27,000 ñ 3,000). Addition of IL-1 partially reserved depression of malaria lymphocytes, but had no effect on normal cells. On the other hand, T-lymphocytes from malaria infected-subjects presented a minimal decrease in proliferation, when cultured in the presence of exogenous PGE2. These data indicate the occurrence of two defects of immunoregulation in malaria: a deficiency of IL-1 production by monocytes/macrophages, and an increased resistance of lymphocytes to the antiproliferative effect of PGE2.
Resumo:
Many factors determine the virulence of a malaria infection. These include host innate resistance mechanisms and, with Plasmodium falciparum, the ability to cytoadhere to endothelial cells, form rosetts, and induce release of cytokines. The effect on virulence of acquired immune responses can be determined by Class I and Class II MHC-antigens; levels of immunological responsiveness may be determined too in other ways. The structure of parasite surface antigens and their great diversity modulate the immune response and influence parasite survival and hence virulence, and transmission to the vector.