69 resultados para Geostatistical inversion
Resumo:
Information underlying analyses of coffee fertilization systems should consider both the soil and the nutritional status of plants. This study investigated the spatial relationship between phosphorus (P) levels in coffee plant tissues and soil chemical and physical properties. The study was performed using two arabica and one canephora coffee variety. Sampling grids were established in the areas, and the points georeferenced. The assessed properties of the soil were levels of available phosphorus (P-Mehlich), remaining phosphorus (P-rem) and particle size, and of the plant tissue, phosphorus levels (foliar P). The data were subjected to descriptive statistical analysis, correlation analysis, cluster analysis, and probability tests. Geostatistical and trend analyses were only performed for pairs of variables with significant linear correlation. The spatial variability for foliar P content was high for the variety Catuai and medium for the other evaluated plants. Unlike P-Mehlich, the variability in P-rem of the soil indicated the nutritional status of this nutrient in the plant.
Resumo:
There is a great lack of information from soil surveys in the southern part of the State of Amazonas, Brazil. The use of tools such as geostatistics may improve environmental planning, use and management. In this study, we aimed to use scaled semivariograms in sample design of soil physical properties of some environments in Amazonas. We selected five areas located in the south of the state of Amazonas, Brazil, with varied soil uses, such as forest, archaeological dark earth (ADE), pasture, sugarcane cropping, and agroforestry. Regular mesh grids were set up in these areas with 64 sample points spaced at 10 m from each other. At these points, we determined the particle size composition, soil resistance to penetration, moisture, soil bulk density and particle density, macroporosity, microporosity, total porosity, and aggregate stability in water at a depth of 0.00-0.20 m. Descriptive and geostatistical analyses were performed. The sample density requirements were lower in the pasture area but higher in the forest. We concluded that managed-environments had differences in their soil physical properties compared to the natural forest; notably, the soil in the ADE environment is physically improved in relation to the others. The physical properties evaluated showed a structure of spatial dependence with a slight variability of the forest compared to the others. The use of the range parameter of the semivariogram analysis proved to be effective in determining an ideal sample density.
Resumo:
The lack of information concerning the variability of soil properties has been a major concern of researchers in the Amazon region. Thus, the aim of this study was to evaluate the spatial variability of soil chemical properties and determine minimal sampling density to characterize the variability of these properties in five environments located in the south of the State of Amazonas, Brazil. The five environments were archaeological dark earth (ADE), forest, pasture land, agroforestry operation, and sugarcane crop. Regular 70 × 70 m mesh grids were set up in these areas, with 64 sample points spaced at 10 m distance. Soil samples were collected at the 0.0-0.1 m depth. The chemical properties of pH in water, OM, P, K, Ca, Mg, H+Al, SB, CEC, and V were determined at these points. Data were analyzed by descriptive and geostatistical analyses. A large part of the data analyzed showed spatial dependence. Chemical properties were best fitted to the spherical model in almost all the environments evaluated, except for the sugarcane field with a better fit to the exponential model. ADE and sugarcane areas had greater heterogeneity of soil chemical properties, showing a greater range and higher sampling density; however, forest and agroforestry areas had less variability of chemical properties.
Resumo:
Epigeous termite mounds are frequently observed in pasture areas, but the processes regulating their population dynamics are poorly known. This study evaluated epigeous termite mounds in cultivated grasslands used as pastures, assessing their spatial distribution by means of geostatistics and evaluating their vitality. The study was conducted in the Cerrado biome in the municipality of Rio Brilhante, Mato Grosso do Sul, Brazil. In two pasture areas (Pasture 1 and Pasture 2), epigeous mounds (nests) were georeferenced and analyzed for height, circumference and vitality (inhabited or not). The area occupied by the mounds was calculated and termite specimens were collected for taxonomic identification. The spatial distribution pattern of the mounds was analyzed with geostatistical procedures. In both pasture areas, all epigeous mounds were built by the same species, Cornitermes cumulans. The mean number of mounds per hectare was 68 in Pasture 1 and 127 in Pasture 2, representing 0.4 and 1 % of the entire area, respectively. A large majority of the mounds were active (vitality), 91 % in Pasture 1 and 84 % in Pasture 2. A “pure nugget effect” was observed in the semivariograms of height and nest circumference in both pastures reflecting randomized spatial distribution and confirming that the distribution of termite mounds in pastures had a non-standard distribution.
Resumo:
In Brazil, grazing mismanagement may lead to soil and pasture degradation. To impede this process, integrated cropping systems such as silvopasture have been an effective alternative, allied with precision agriculture based on soil mapping for site-specific management. In this study, we aimed to define the soil property that best sheds light on the variability of eucalyptus and forage yield. The experiment was conducted in the 2011/12 crop year in Ribas do Rio Pardo, Mato Grosso do Sul State, Brazil. We analyzed linear and spatial correlations between eucalyptus traits and physical properties of a Typic Quartzipsamment at two depths (0.00-0.10 and 0.10-0.20 m). For that purpose, we set up a geostatistical grid for collection at 72 points. Gravimetric moisture in the 0.00-0.10 m layer is an important index of soil physical quality, showing correlation to eucalyptus circumference at breast height (CBH) in a Typic Quartzipsamment. With an increase in resistance to penetration in the soil surface layer, there is an increase in eucalyptus height and in neutral detergent fiber content in the forage crop. From a spatial point of view, the height of eucalyptus and the neutral detergent fiber of forage can be estimated by co-kriging analysis with soil resistance to penetration. Resistance to penetration values above 2.3 MPa indicated higher yielding sites.
Resumo:
The assessment of spatial uncertainty in the prediction of nutrient losses by erosion associated with landscape models is an important tool for soil conservation planning. The purpose of this study was to evaluate the spatial and local uncertainty in predicting depletion rates of soil nutrients (P, K, Ca, and Mg) by soil erosion from green and burnt sugarcane harvesting scenarios, using sequential Gaussian simulation (SGS). A regular grid with equidistant intervals of 50 m (626 points) was established in the 200-ha study area, in Tabapuã, São Paulo, Brazil. The rate of soil depletion (SD) was calculated from the relation between the nutrient concentration in the sediments and the chemical properties in the original soil for all grid points. The data were subjected to descriptive statistical and geostatistical analysis. The mean SD rate for all nutrients was higher in the slash-and-burn than the green cane harvest scenario (Student’s t-test, p<0.05). In both scenarios, nutrient loss followed the order: Ca>Mg>K>P. The SD rate was highest in areas with greater slope. Lower uncertainties were associated to the areas with higher SD and steeper slopes. Spatial uncertainties were highest for areas of transition between concave and convex landforms.
Resumo:
ABSTRACT The study of soil chemical and physical properties variability is important for suitable management practices. The aim of this study was to evaluate the spatial variability of soil properties in the Malhada do Meio settlement to subsidize soil use planning. The settlement is located in Chapadinha, MA, Brazil, and has an area of 630.86 ha. The vegetation is seasonal submontane deciduous forest and steppe savanna. The geology is formed of sandstones and siltstones of theItapecuru Formation and by colluvial and alluvial deposits. The relief consists of hills with rounded and flat tops with an average altitude of 67 m, and frequently covered over by ferruginous duricrusts. A total of 183 georeferenced soil samples were collected at the depth of 0.00-0.20 m inPlintossolos, Neossolo andGleissolo. The following chemical variables were analyzed: pH(CaCl2), H+Al, Al, SB, V, CEC, P, K, OM, Ca, Mg, SiO2, Al2O3, and Fe2O3; along with particle size variables: clay, silt, and sand. Descriptive statistical and geostatistical analyses were carried out. The coefficient of variation (CV) was high for most of the variables, with the exception of pH with a low CV, and of sand with a medium CV. The models fitted to the experimental semivariograms of these variables were the exponential and the spherical. The range values were from 999 m to 3,690 m. For the variables pH(CaCl2), SB, and clay, there are three specific areas for land use planning. The central part of the area (zone III), where thePlintossolos Pétricos and Neossolos Flúvicos occur, is the most suitable for crops due to higher macronutrient content, organic matter and pH. Zones I and II are indicated for environmental preservation.
Resumo:
The current high competition on Citrus industry demands from growers new management technologies for superior efficiency and sustainability. In this context, precision agriculture (PA) has developed techniques based on yield mapping and management systems that recognize field spatial variability, which contribute to increase profitability of commercial crops. Because spatial variability is often not perceived the orange orchards are still managed as uniform and adoption of PA technology on citrus farms is low. Thus, the objective of the present study was to characterize the spatial variability of three factors: fruit yield, soil fertility and occurrence of plant gaps caused by either citrus blight or huanglongbing (HLB) in a commercial Valencia orchard in Brotas, São Paulo State, Brazil. Data from volume, geographic coordinates and representative area of the bags used on harvest were recorded to generate yield points that were then interpolated to produce the yield map. Soil chemical characteristics were studied by analyzing samples collected along planting rows and inter-rows in 24 points distributed in the field. A map of density of tree gaps was produced by georeferencing individual gaps and later by counting the number of gaps within 500 m² cells. Data were submitted to statistical and geostatistical analyses. A t test was used to compare means of soil chemical characteristics between sampling regions. High variation on yield and density of tree gaps was observed from the maps. It was also demonstrated overlapping regions of high density of plant absence and low fruit yield. Soil fertility varied depending on the sampling region in the orchard. The spatial variability found on yield, soil fertility and on disease occurrence demonstrated the importance to adopt site specific nutrient management and disease control as tools to guarantee efficiency of fruit production.
Resumo:
The present experiment describes an easy procedure for obtaining SiO2/ZrO2 by reacting ZrOCl2 with SiO2 with the following characteristics: S BET = 500 m² g-1 and an average pore diameter of 6 nm. The material obtained presented 1.3 wt% ZrO2 content corresponding to 140 mumol g-1. The average density of ZrO2 onto SiO2/ZrO2 matrix is 2.8x10-11 mol cm-2. The adsorption isotherm for Cr(VI) showed a maximum of adsorption value (200 mumol g-1) at pH 2. The adsorption can be described by the reaction: =Zr(OH)2 + 2HCrO4- + 2H+
[(=Zr(OH2+)2) (HCrO4-)2]. Above the zero point of charge, i.e. pH > 5.5 due to the surface charge inversion, desorption of Cr(VI) occurs according to the reaction: [(=Zr(OH2+)2) (HCrO4-)2] + 6OH-
(=ZrO2)2- + 6H2O + 2CrO4(2-).
Resumo:
Electroflotation (EF) with aluminum electrodes was applied in the treatment of Brazilian industrial coconut wastewater. The results show that EF with polarity inversion is a very good treatment when compared to others. The removal of pollutants in the wastewater after EF with polarity inversion was 96.3% of oils and grease, 99% of color and 66% of total organic carbon. Also, metal concentrations, turbidity and total solids were reduced.
Resumo:
This paper describes the adsorption of an oligothymidylate (pdT16) on nanoemulsions obtained by spontaneous emulsification procedures. Formulations were composed by medium chain triglycerides, egg lecithin, glycerol, water (NE) and stearylamine (NE SA). After optimization of operating conditions, the mean droplet size was smaller than 255 nm. Adsorption isotherms showed a higher amount of pdT16 adsorbed on cationic NE SA (60 mg/g) compared to NE (20 mg/g). pdT16 adsorption was also evidenced by the inversion of the zeta-potential of NE SA (from +50 to -30 mV) and the morphology of oil droplets examined through transmission electron microscopy. The overall results showed the role of electrostatic interactions on the adsorption of pdT16 on the oil/water interface of nanoemulsions.
Resumo:
Cellulose acetate polymeric membranes had been prepared by a procedure of two steps, combining the method of phase inversion and the technique of hydrolysis-deposition. The first step was the preparation of the membrane, and together was organomodified with tetraethylortosilicate and 3-aminopropyltrietoxysilane. Parameters that exert influence in the complexation of the metallic ion, as pH, time of complexation, metal concentration, had been studied in laboratory using tests of metal removal. The membranes had presented resistance mechanics and reactivity to cations, being able to be an alternative for the removal, daily pay-concentration or in the study of the lability of metals complexed.
Resumo:
Methane combustion was studied by the Westbrook and Dryer model. This well-established simplified mechanism is very useful in combustion science, for computational effort can be notably reduced. In the inversion procedure to be studied, rate constants are obtained from [CO] concentration data. However, when inherent experimental errors in chemical concentrations are considered, an ill-conditioned inverse problem must be solved for which appropriate mathematical algorithms are needed. A recurrent neural network was chosen due to its numerical stability and robustness. The proposed methodology was compared against Simplex and Levenberg-Marquardt, the most used methods for optimization problems.
Resumo:
The synthesis and characterization of asymmetric ultrafiltration membranes from recycled polyethylene terephthalate (PET) and polyvinylpyrrolidone (PVP) is reported. PET is currently used in many applications, including the manufacture of bottles and tableware. Monomer extraction from waste PET is expensive, and this process has not yet been successfully demonstrated on a viable scale. Hence, any method to recycle or regenerate PET once it has been used is of significant importance from scientific and environmental research viewpoints. Such a process would be a green alternative due to reduced raw monomer consumption and the additional benefit of reduced manufacturing costs. The membranes described here were prepared by a phase-inversion process, which involved casting a solution containing PET, m-cresol as solvent, and polyethylene glycol (PEG) of different molecular weights as additives. The membranes were characterized in terms of pure water permeability (PWP), molecular weight cut-off (MWCO), and flux and membrane morphology. The results show that the addition of PEG with high molecular weights leads to membranes with higher PWP. The presence of additives affects surface roughness and membrane morphology.
Resumo:
Nanoemulsions composed of a medium-chain triglyceride oil core stabilized by rapeseed or sunflower lecithins were prepared by spontaneous emulsification and high-pressure homogenization. These nanoemulsions are compared with formulations stabilized by egg lecithin. Nanoemulsions obtained by high-pressure homogenization display larger droplet size (230 to 440 nm) compared with those obtained by spontaneous emulsification (190 to 310 nm). The zeta potentials of the emulsions were negative and below -25 mV. Zeta potential inversion occurred between pH 3.0 and 4.0. The results demonstrate the feasibility of preparing lipid emulsions comprising rapeseed or sunflower lecithins by spontaneous emulsification and high-pressure homogenization.