71 resultados para Etanol combustível
Resumo:
The present work investigated the effect of coprecipitation-oxidant synthesis on the specific surface area of perovskite-type oxides LaBO3 (B= Mn, Ni, Fe) for total oxidation of ethanol. The perovskite-type oxides were characterized by X-ray diffraction, nitrogen adsorption (BET method), thermogravimetric analysis (TGA-DTA), TPR and X-ray photoelectron spectroscopy (XPS). Through method involving the coprecipitation-oxidant was possible to obtain catalysts with different BET specific surface areas, of 33-51 m²/g. The results of the catalytic test confirmed that all oxides investigated in this work have specific catalytic activity for total oxidation of ethanol, though the temperatures for total conversion change for each transition metal.
Resumo:
This manuscript shows an overview of the solid oxide fuel cell (SOFC) technology based on industrial developments. The information presented has been collected mostly at conferences that the authors attended. It is observed that several companies have been pursuing the development of the SOFC technology. Significant advances in stability and power density have raised the economic interest in this technology recently. It is revealed that the SOFC materials are essentially the same ones that have been used in the past decades, and that the two most important designs of pre-commercial SOFC prototypes are the tubular and planar ones.
Resumo:
Operation and performance of a commercial PAFC power plant were analyzed. Processes influencing energy conversion efficiency were studied in each module of the fuel cell power plant. The main processes were simulated using mass and energy balance equations, and the results were validated by means of experimental data. It was concluded that the electrical efficiency is higher in comparison with microturbines. The main result achieved is a better understanding of balance of plant processes, knowledge necessary for fuel cell power plant development.
Resumo:
There is presently much interest in the clean and efficient generation of energy by proton exchange membrane fuel cells (PEMFC), using hydrogen as fuel. The generation of hydrogen by the reforming of other fuels, anaerobic fermentation of residual waters and other methods, often produce contaminants that affect the performance of the cell. In this work, the effect of gaseous SO2 and NO2 on the performance of a H2/O2 single PEMFC is studied. The results show that SO2 decreases irreversibly the performance of the cell under operating conditions, while NO2 has a milder effect that allows the recovery of the system.
Resumo:
The specific consumption and carbon monoxide (CO) and nitrogen oxide (NO) emissions from gasolines formulated with ethanol, methyl tert-butyl ether (MTBE) and tert-amyl ethyl ether (TAEE) were evaluated in the rich, stoichiometric and lean-burn regions during the operation of an Otto-cycle engine. The use of ethanol as an additive presented high specific consumption, while gasoline formulated with TAEE showed low specific consumption with the engine operating under lean-burn conditions. The ethers evaluated here presented a low percentage of CO in the rich-burn region when compared with ethanol.
Resumo:
The castor bean cake is rich in starch (48 ± 0.53%) and bears a problem linked to the occurrence of a toxic protein (ricin). The chemical hydrolysis (ratio solid:liquid = 1:6; H2SO4= 0.1 mol L-1; 120 °C; 40 min) generated a medium with 27 g L-1 of reducing sugars (hydrolysis efficiency= 32%). The hydrolyzed product was fermented and produced 11 g L-1 of ethanol (volumetric productivity=1.38 g L-1 h-1 and ethanol yield on substrate consumed=0.45 g g-1). In vivo experiments (DL50) revealed a reduction of roughly 240 times in the CBC toxicity (2.11 µg g-1).
Resumo:
This paper is focused on a review of the design features and the electrochemistry characterization of anode-supported planar SOFC. Studies and results of metallic alloy interconnectors and recovery for protection against corrosion and for contact layer are showed. Moreover a discussion of examples of measurements of impedance spectrometry, according to the literature and our experimental results are made. For the anode supported fuel cells the power density varies from 0.1 to 0.5 Wcm², according to results in the literature (showed in this paper). For electrolyte supported fuel cell the power density can be 10 Wcm-2 for high temperatures. An English-Portuguese glossary of most used terms in SOFC stack is given for greater clarity and to introduce new terms to the reader.
Resumo:
The concentration of 15 polycyclic aromatic hydrocarbons (PAHs) in 57 samples of distillates (cachaça, rum, whiskey, and alcohol fuel) has been determined by HPLC-Fluorescence detection. The quantitative analytical profile of PAHs treated by Partial Least Square - Discriminant Analysis (PLS-DA) provided a good classification of the studied spirits based on their PAHs content. Additionally, the classification of the sugar cane derivatives according to the harvest practice was obtained treating the analytical data by Linear Discriminant Analysis (LDA), using naphthalene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benz[a]anthracene, benz[b]fluoranthene, and benz[g,h,i]perylene, as a chemical descriptors.
Resumo:
The aim of this study was to validate a method for the determination of acethaldehyde, methanol, ethanol, acetone and isopropanol employing solid-phase microextraction associated to gas chromatography with flame ionization detection. The operational conditions of SPME were optimized by response surface analysis. The calibration curves for all compounds were linear with r² > 0.9973. Accuracy (89.1-109.0%), intra-assay precision (1.8-8.5%) and inter-assay precision (2.2-8.2%) were acceptable. The quantification limit was 50 µg/mL. The method was applied to the meaurement of ethanol in blood and oral fluid of a group of volunteers. Oral fluid ethanol concentrations were not directly correlated with blood concentrations.
Resumo:
This work focus on the influence of solvent on the photophysical properties of chlorophyll α and pheophytin. Both compounds are related to the photosynthesis process and are considered prototypes of photosensitizers in Photodynamic Therapy. Fluorescence measurements were developed using water/ethanol mixtures at different compositions, since both solvents could be employed in biological applications. The spectroscopic properties of these compounds undergo profound changes depending on water content in the ethanol due to auto-aggregation processes. The major hydrophobicity and the lower dielectric constant of ethanol when compared with water precluded significantly the auto-aggregation process of these compounds.
Resumo:
Extended Hildebrand Solubility Approach (EHSA) developed by Martin et al. was applied to evaluate the solubility of ketoprofen (KTP) in ethanol + water cosolvent mixtures at 298.15 K. Calculated values of molar volume and solubility parameter for KTP were used. A good predictive capacity of EHSA was found by using a regular polynomial model in order five to correlate the W interaction parameter and the solubility parameters of cosolvent mixtures (δmix). Nevertheless, the deviations obtained in the estimated solubilities with respect to the experimental solubilities were on the same order like those obtained directly by means of an empiric regression of the logarithmic experimental solubilities as a function of δmix values.
Resumo:
Stochastic exploration of the potential energy surface of (ethanol)4-water heteropentamers through simulated annealing calculations was used to find probable structures of these clusters. Subsequent geometry optimization with the B3LYP/6-31+G(d) approach of these initial structures led to 13 stable heteropentamers. The strength of the hydrogen bonds of the type O"H-O (primary) and their spatial arrangements seem to be responsible for the geometric preferences and the high stability of these heteropentamers. This result is a consequence of the presence of the cooperative effects among such interactions. There is no significant influence of the secondary hydrogen bonds (C"H-O) on the stability of the heteropentamers.
Resumo:
In this work, four different process configurations, including three simultaneous saccharification and fermentation (SSF) schemes and one separate hydrolysis and fermentation (SHF) scheme, were compared, at 8% water-insoluble solids, regarding ethanol production from steam-pretreated and alkali-delignified sugar cane bagasse. Two configurations included a 16 h lasting enzymatic presaccharification prior to SSF, and the third one was a classical SSF without presaccharification. Cellulose conversion was higher for the delignified bagasse, and higher in SSF experiments than in SHF. The highest cellulose-to-ethanol conversion (around 60% in 24 h) and maximum ethanol volumetric productivities (0.29-0.30 g/L.h) were achieved in the presaccharification-assisted SSF.
Resumo:
Direct methanol fuel cells (DMFCs) without external pumps or other ancillary devices for fuel and oxidant supply are known as passive DMFCs and are potential candidates to replace lithium-ion batteries in powering portable electronic devices. This paper presents the results obtained from a membrane electrode assembly (MEA) specifically designed for passive DMFCs. Appropriated electrocatalysts were prepared and the effect of their loadings was investigated. Two types of gas diffusion layers (GDL) were also tested. The influence of the methanol concentration was analyzed in each case. The best MEA performance presented a maximum power density of 11.94 mW cm-2.
Resumo:
La-incorporated SBA-15 mesopourous molecular sieves (LaSBA-15) were directly synthesized with aim to convert ethanol to ethylene. The samples were characterized by XRD, XRF, nitrogen sorption and acidity, by thermodesorption of n-buthylamine. The results have indicated that all the samples have showed high ordered mesostructure with a large average pore size, and that the lanthanum incorporation has caused an increase in the acidity of the SBA-15. The LaSBA-15 samples have improved, with low deactivation rate, the conversion of the ethanol to water, ether, acetaldehyde and ethylene. In addition, they have increased the ethylene selectivity.