60 resultados para ETHYLENE-OCTENE COPOLYMERS
Resumo:
Chitin and chitosan are copolymers build from N-acetyl-D-glucosamine and D-glucosamine. The former is widely found in nature and yields the latter on deacetylation. The copolymers are being used for several purposes. Since 1977, when the First International Conference on Chitin and Chitosan was held in Boston, USA, the interest on chitin and chitosan has remarkably increased. This review emphasizes pharmaceutical applications of chitosan and its derivatives, and presents recent advances. Some therapeutical applications of these polymers are also discussed.
Resumo:
In an attempt to improve the performance of organolanthanide catalysts we investigated the use of the industrially important cocatalyst methylaluminoxane (MAO) to activate organolanthanide compounds in olefin polymerization. The catalytic systems LnBrCp2(THF)2/MAO (Cp=cyclopentadienyl) and LnBrCp*2THF/MAO (Cp*= pentamethylcyclopentadienyl), Ln=Pr and Yb, were active in styrene polymerization but inactive in ethylene and propylene polymerization. These systems produced atactic polystyrene with conversions of up to 8.2% (PrBrCp*2THF, Al/Ln=200, T=80ºC, t=4 h) in toluene. In the absence of solvent, the conversion is 26.0% (1.5 h) and the molar mass of the atactic polystyrene is almost ten times higher (43 kg/mol).
Resumo:
The principal techniques for the synthesis of liquid crystalline block copolymers are reviewed. The syntheses are done by living/controlled free radical chain polymerization. The copolymers display an amorphous continuous phase and a discontinuous liquid crystalline phase (LC). The presence of oxypropylenic segments disturbs the range of mesophase transitions at lower temperatures. This behavior is not observed when styrenic segments are employed and suggests that the liquid crystalline behavior can be modified in block copolymers to show mesophases at higher and lower temperatures according to the flexibility of the chain segment that is present.
Resumo:
The present work analyzed the effect of the temperature and type of salt on the phase equilibrium of aqueous two-phase systems (ATPS) formed by poly (ethylene glycol) (PEG) 1500 + potassium phosphate, from (278.15 to 318.15) K, and PEG 1500 + sodium citrate, from (278.15 to 298.15) K. The rise of the temperature normally increased the slope of the tie line (STL). With respect to the influence of the type of salt, sodium citrate showed better capability to induce phase separation, when compared to potassium phosphate.
Resumo:
We present a theoretical study of molecular properties in C2H4···2HF, C2H2···2HF and C3H6···2HF trimolecular hydrogen-bonded complexes. From B3LYP/6-311++G(d,p) calculations, the most important structural deformations are related to the C=C (C2H4), C≡C (C2H2), C-C (C3H6) and HF bond lengths. According to the Bader's atoms in molecules and CHELPG calculations, it was identified a tertiary interaction between the fluorine atom of the second hydrofluoric acid molecule and hydrogen atoms of the ethylene and acetylene within the C2H4···2HF and C2H2···2HF complexes, respectively. Additionally, the evaluation of the infrared spectrum characterized the new vibrational modes and bathochromic effect of the HF molecules.
Resumo:
Surface tension knowledge of surfactants aqueous solutions is important during amphiphilic molecule manufacturing and new product development, as feedback information to handle synthesis parameters to target performance. Drop counting method is an interesting simplification of drop weight method for surface tension measurements. A simple laboratory measurement device, with capability for temperature control, was assembled to allow investigation of ethoxylated surfactants. The implementation of the method was preceded by a detailed investigation of two factors that may affect the measured surface tension: drop formation velocity and surfactant ethoxylation degree. The limitations of the method are discussed on this basis.
Resumo:
Poly(hydroxybutyrate) and its copolymers are linear polyesters behaving as conventional thermoplastic materials. However, they are totally biodegradable and produced by a wide variety of bacteria from renewable sources. Some properties and high production cost are still preventing future applications. In an attempt to improve the properties and to reduce cost blending PHB with others polymeric materials is one of the most efficient method. In this paper, miscibility, compatibility, morphological and mechanical aspects of PHB blends will be reviewed. An extensive revision over twenty last years was realized about works of blends based on PHB and its copolymers.
Resumo:
Silver nanoparticles (AgNPs) were prepared by means of the polyol method in the absence of stabilizing polymers. To accomplish this objective, AgNO3 was added to ethylene glycol in the presence of NaOH (1 mol.L-1), the suspension formed was irradiated with a microwave source for 60 seconds at a power of 465 watts. It was found that under these conditions AgNPs of sizes between 4-18 nm are formed. Also the results indicate that part of the ethylene glycol is oxidized to carbonyl compounds that reduce the Ag+. These organic compounds are adsorbed on the surfaces of AgNPs, forming a protective film that prevents their aggregation.
Resumo:
Effects of two ethylene inhibitors, 1-methylcylopropene (1-MCP) and aminoethoxyvinylglycine (AVG), on production of volatile compounds and mangiferin (a bioactive xanthone) in 'Tommy Atkins' mango fruit were investigated. Volatile composition and mangiferin content, in treated and untreated fruits at three maturity, stages were determined by SPME-GC-MS and HPLC, respectively. These chromatographical analysis revealed that the volatile profiles and mangiferin concentrations were not significantly different, suggesting that the use of ethylene inhibitors does not affect the mango aroma and functional properties relative to this xanthone. Moreover, a simple, precise and accurate HPLC method was developed for quantifying mangiferin in mango pulp.
Resumo:
La-incorporated SBA-15 mesopourous molecular sieves (LaSBA-15) were directly synthesized with aim to convert ethanol to ethylene. The samples were characterized by XRD, XRF, nitrogen sorption and acidity, by thermodesorption of n-buthylamine. The results have indicated that all the samples have showed high ordered mesostructure with a large average pore size, and that the lanthanum incorporation has caused an increase in the acidity of the SBA-15. The LaSBA-15 samples have improved, with low deactivation rate, the conversion of the ethanol to water, ether, acetaldehyde and ethylene. In addition, they have increased the ethylene selectivity.
Resumo:
In this communication we describe the application of a conductive polymer gas sensor as an air pressure sensor. The device consists of a thin doped poly(4'-hexyloxy-2,5-biphenylene ethylene) (PHBPE) film deposited on an interdigitated metallic electrode. The sensor is cheap, easy to fabricate, lasts for several months, and is suitable for measuring air pressures in the range between 100 and 700 mmHg.
Resumo:
We report the development of two copolymers based on 2-vinylpyridine, styrene and divinylbenzene (2Vpy-Sty-DVB) with different porosity degrees. The copolymers were subsequently quaternized with methyl iodide. To prepare charge transfer complexes, the unmodified copolymers and their derivatives quaternized with methyl iodine were impregnated with iodine. The antibacterial properties of the polymers were evaluated in dilutions ranging from 10² to 10(7) cells/mL of the auxotrophic OHd5-K12 Escherichia coli strain. It was possible to obtain materials with complete antibacterial activity even in the highest cell concentrations tested.
Resumo:
In situ ethylene polymerizations were performed using bis(cyclopentadiene)titanium dichloride supported on polyethersulfone as catalyst. The bis(cyclopentadiene)titanium dichloride supported on polyethersulfone catalyst activity estimated by ethylene polymerization was 360 kgPE/molTi/h. During polymerization the fillers used were montmorillionite nanoclays having surface modifications with 35-45 wt% dimethyl dialkyl(14-18)amine (FA) and 25-30 wt% trimethyl stearyl ammonium (FB). These fillers were pretreated with methylaluminoxine (MAO; cocatalyst) for better dispersion onto the polymer matrix. The formation of polyethylene within the whole matrix was confirmed by FTIR studies. It was found that the nature of nanofiller did not have any remarkable effect on the melting characteristics of the polymer. TGA study indicates that nanoclay FB filled polyethylene has higher thermal stability than nanoclay FA filled polyethylene. The melting temperature of the obtained polyethylenes was 142 ºC, which corresponds to that synthesized by the polyether sulfone supported catalyst.
Resumo:
Ring Opening Metathesis Polymerization (ROMP) of cyclic olefins is a powerful transition metal-catalyzed reaction for syntheses of polymers and copolymers. The key feature of this reaction is the [2+2]-cycloaddition mechanism, with retention of the olefinic unsaturation in the polymer chain and occurrence of living polymerization. With the development of metal-carbene type catalysts for this process, many addressed polymeric materials have been successfully prepared to be employed in several fields of the science and technology. This review summarizes recent examples of syntheses of polymers with amphiphilic features such as block, graft, brush or star copolymers; as well syntheses of biomaterials, dendronized architectures, photoactive polymers, cross-linked or self-healing materials, and polymers from renewed supplies.
Resumo:
The use of biopolymers for the development of oxygen carriers has been extensively investigated. In this work, three different ABA triblock copolymers were synthesized and used to encapsulate purified bovine hemoglobin, using a double emulsion technique. The effect of polymer composition, homogenization velocity, and addition of a surfactant, on the protein entrapment was evaluated. These copolymers, which have a hydrophilic block, achieved higher values of encapsulation efficiency than the corresponding homopolymers. The increase in homogenization strength also promoted an increase in encapsulation efficiency. Capsules formation occurred even in the absence of PVA.