58 resultados para Detection System
Resumo:
This study was carried out to investigate the immune response against 97 kDa (p97) molecular marker of Toxoplasma gondii that has been characterized as a cytosolic protein and a component of the excreted-secreted antigens from this parasite. A total of 60 serum samples from patients were analyzed by enzime-linked immunosorbent assay and Western blot for toxoplasmosis. These samples were organized in three groups, based on clinical symptoms and results of serological tests. Group I: 20 samples reactive to IgG and IgM (acute phase); group II: 20 non-reactive samples (control group); and group III: 20 samples reactive only to IgG (chronic phase). Western blot was performed with total antigenic extracts or with excreted and secreted antigen from T. gondii to identify the fraction correspondent to p97. It was observed that this cytosolic component from T. gondii stimulates the immunologic system to produce both IgM and IgG antibodies in the beginning of the acute infection and IgG throughout the chronic stage of the asymptomatic toxoplasmosis.
Resumo:
The objective of the current study was to compare two rapid methods, the BBL Mycobacteria Growth Indicator Tube (MGIT TM) and Biotec FASTPlaque TB TM (FPTB) assays, with the conventional Löwenstein-Jensen (LJ) media assay to diagnose mycobacterial infections from paucibacillary clinical specimens. For evaluation of the clinical utility of the BBL MGIT TM and FPTB assays, respiratory tract specimens (n = 208), with scanty bacilli or clinically evident, smear negative cases and non-respiratory tract specimens (n = 119) were analyzed and the performance of each assay was compared with LJ media. MGIT and FPTB demonstrated a greater sensitivity (95.92% and 87.68%), specificity (94.59% and 98.78%), positive predictive value (94.91% and 99.16%) and negative predictive value (96.56% and 90.92%), respectively, compared to LJ culture for both respiratory tract and non-respiratory tract specimens. However, the FPTB assay was unable to detect nontuberculous mycobacteria and few Mycobacterium tuberculosis complex cases from paucibacillary clinical specimens. It is likely that the analytical sensitivity of FPTB is moderately low and may not be useful for the direct detection of tuberculosis in paucibacillary specimens. The current study concluded that MGIT was a dependable, highly efficient system for recovery of M. tuberculosis complexes and nontuberculous mycobacteria from both respiratory and non-respiratory tract specimens in combination with LJ media.
Resumo:
Single-stranded DNA (ssDNA) is a prerequisite for electrochemical sensor-based detection of parasite DNA and other diagnostic applications. To achieve this detection, an asymmetric polymerase chain reaction method was optimised. This method facilitates amplification of ssDNA from the human lymphatic filarial parasite Wuchereria bancrofti. This procedure produced ssDNA fragments of 188 bp in a single step when primer pairs (forward and reverse) were used at a 100:1 molar ratio in the presence of double-stranded template DNA. The ssDNA thus produced was suitable for immobilisation as probe onto the surface of an Indium tin oxide electrode and hybridisation in a system for sequence-specific electrochemical detection of W. bancrofti. The hybridisation of the ssDNA probe and target ssDNA led to considerable decreases in both the anodic and the cathodic currents of the system's redox couple compared with the unhybridised DNA and could be detected via cyclic voltammetry. This method is reproducible and avoids many of the difficulties encountered by conventional methods of filarial parasite DNA detection; thus, it has potential in xenomonitoring.
Resumo:
Countries could use the monitoring of drug resistance in malaria parasites as an effective early warning system to develop the timely response mechanisms that are required to avert the further spread of malaria. Drug resistance surveillance is essential in areas where no drug resistance has been reported, especially if neighbouring countries have previously reported resistance. Here, we present the results of a four-year surveillance program based on the sequencing of the pfcrt gene of Plasmodium falciparum populations from endemic areas of Honduras. All isolates were susceptible to chloroquine, as revealed by the pfcrt “CVMNK” genotype in codons 72-76.
Resumo:
The Global Program for the Elimination of Lymphatic Filariasis (GPELF) aims to eliminate this disease by the year 2020. However, the development of more specific and sensitive tests is important for the success of the GPELF. The present study aimed to standardise polymerase chain reaction (PCR)-based systems for the diagnosis of filariasis in serum and urine. Twenty paired biological urine and serum samples from individuals already known to be positive for Wuchereria bancrofti were collected during the day. Conventional PCR and semi-nested PCR assays were optimised. The detection limit of the technique for purified W. bancrofti DNA extracted from adult worms was 10 fg for the internal systems (WbF/Wb2) and 0.1 fg by using semi-nested PCR. The specificity of the primers was confirmed experimentally by amplification of 1 ng of purified genomic DNA from other species of parasites. Evaluation of the paired urine and serum samples by the semi-nested PCR technique indicated only two of the 20 tested individuals were positive, whereas the simple internal PCR system (WbF/Wb2), which has highly promising performance, revealed that all the patients were positive using both samples. This study successfully demonstrated the possibility of using the PCR technique on urine for the diagnosis of W. bancrofti infection.
Resumo:
Glyphosate is a systemic, nonselective, postemergence herbicide that inhibits growth of both weeds and crop plants. Once inside the plant, glyphosate interferes with biosynthesis of aromatic amino acids phenylalanine, tyrosine, and tryptophan, by inhibiting the activity of 5enolpyruvylshikimate-3-phosphate synthase (EPSPS), a key enzyme of the shikimate pathway. The objective of this work was to develop a simple, effective and inexpensible method for identification of transgenic soybean tolerant to glyphosate. This technique consisted in germinating soybean seeds in filter paper moistened with 100 to 200 muM of glyphosate. Transgenic soybean seeds tolerant to glyphosate germinated normally in this solution and, between 7 and 10 days, started to develop a primary root system. However non-transgenic seeds stopped primary root growth and emission of secondary roots.
Resumo:
A flow system coupled to a tungsten coil atomizer in an atomic absorption spectrometer (TCA-AAS) was developed for As(III) determination in waters, by extraction with sodium diethyldithiocarbamate (NaDDTC) as complexing agent, and by sorption of the As(III)-DDTC complex in a micro-column filled with 5 mg C18 reversed phase (10 µL dry sorbent), followed by elution with ethanol. A complete pre-concentration/elution cycle took 208 s, with 30 s sample load time (1.7 mL) and 4 s elution time (71 µL). The interface and software for the synchronous control of two peristaltic pumps (RUN/ STOP), an autosampler arm, seven solenoid valves, one injection valve, the electrothermal atomizer and the spectrometer Read function were constructed. The system was characterized and validated by analytical recovery studies performed both in synthetic solutions and in natural waters. Using a 30 s pre-concentration period, the working curve was linear between 0.25 and 6.0 µg L-1 (r = 0.9976), the retention efficiency was 94±1% (6.0 µg L-1), and the pre-concentration coefficient was 28.9. The characteristic mass was 58 pg, the mean repeatability (expressed as the variation coefficient) was 3.4% (n=5), the detection limit was 0.058 µg L-1 (4.1 pg in 71 µL of eluate injected into the coil), and the mean analytical recovery in natural waters was 92.6 ± 9.5 % (n=15). The procedure is simple, economic, less prone to sample loss and contamination and the useful lifetime of the micro-column was between 200-300 pre-concentration cycles.
Resumo:
Sediment contamination is evaluated by determining organic micropollutants (organochlorine compounds - OCs and polycyclic aromatic hydrocarbons - PAHs) in two important Brazilian water reservoirs. Trace levels of OCs were observed in the Santana reservoir (44.8 ng g-1 d.w. of p,p'-DDT), while in the Funil reservoir the levels were below detection level. Forty-eight percent of the found sigmaocs were polychlorinated biphenyls, 29% dichlorodiphenyltrichloroethane (DDT), 18% Drins, and 5% other pesticides (HCB, Heptachlor, Heptachlor-epoxide, gamma-HCH and a-Endosulfan). We observed lower levels of sigmaPAH in the Funil reservoir (1 to 275 ng g-1d.w.) than in the Santana reservoir (2.2 to 26.7 µg g-1 d.w.).
Resumo:
A simple and sensitive on-line flow injection system for determination of zinc with FAAS has been described. The method is based on the separation and preconcentration of zinc on a microcolumn of immobilized Alizarin Red S on alumina. The adsorbed analyte is then eluted with 250 µL of nitric acid (1 mol L-1) and is transported to flame atomic absorption spectrometer for quantification. The effect of pH, sample and eluent flow rates and presence of various cations and anions on the retention of zinc was investigated. The sorption of zinc was quantitative in the pH range of 5.5-8.5. For a sample volume of 25 mL an enrichment factor of 144 and a detection limit (3S) of 0.2 µg L-1 was obtained. The precision (RSD, n=7) was 3.0% at the 20 µg L-1 level. The developed system was successfully applied to the determination of zinc in water samples, hair, urine and saliva.
Resumo:
A method to detect Apple stem grooving virus (ASGV) based on reverse transcription polymerase chain reaction (RT-PCR) was developed using primers ASGV4F-ASGV4R targeting the viral replicase gene, followed by a sandwich hybridisation, in microtiter plates, for colorimetric detection of the PCR products. The RT-PCR was performed with the Titan™ RT-PCR system, using AMV and diluted crude extracts of apple (Malus domestica) leaf or bark for the first strand synthesis and a mixture of Taq and PWO DNA polymerase for the PCR step. The RT-PCR products is hybridised with both a biotin-labelled capture probe linked to a streptavidin-coated microtiter plate and a digoxigenin (DIG)-labelled detection probe. The complex was detected with an anti-DIG conjugate labelled with alkaline phosphatase. When purified ASGV was added to extracts of plant tissue, as little as 400 fg of the virus was detected with this method. The assay with ASGV4F-ASGV4R primers specifically detected the virus in ASGV-infected apple trees from different origins, whereas no signal was observed with amplification products obtained with primers targeting the coat protein region of the ASGV genome or with primers specific for Apple chlorotic leaf spot virus (ACLSV) and Apple stem pitting virus (ASPV). The technique combines the power of PCR to increase the number of copies of the targeted gene, the specificity of DNA hybridization, and the ease of colorimetric detection and sample handling in microplates.
Resumo:
In this work is proposed a solid phase preconcentration system of Co2+ ions and its posterior determination by GFAAS in which fractional factorial design and response surface methodology (RSM) were used for optimization of the variables associated with preconcentration system performance. The method is based on cobalt extraction as a complex Co2+-PAN (1:2) in a mini-column of polyurethane foam (PUF) impregnated with 1-(2-pyridylazo)-naphthol (PAN) followed by elution with HCl solution and its determination by GFAAS. The chemical and flow variables studied were pH, buffer concentration, eluent concentration and preconcentration and elution flow rates. Results obtained from fractional factorial design 2(5-1) showed that only the variables pH, buffer concentration and interaction (pH X buffer concentration) based on analysis of variance (ANOVA) were statistically significant at 95% confidence level. Under optimised conditions, the method provided an enrichment factor of 11.6 fold with limit of detection and quantification of 38 and 130 ng L-1, respectively, and linear range varying from 0.13 to 10 µg L-1. The precision (n = 9) assessed by relative standard deviation (RSD) was respectively 5.18 and 2.87% for 0.3 and 3.0 µg L-1 cobalt concentrations.
Resumo:
In this paper, we report the stability of the Li(HF)3- molecular anion calculated at the MP2/6-31++G** and CCSD(T)/6-31++G** level of theory. Five possible conformers of Li(HF)3- molecular anions have been determined employing ab initio MP2 method with 6-31++G** basis set. The most stable conformer of five Li(HF)3- anions is in a cyclic ring structure Li(HF)3-(1). From our calculations we show that the molecule is stable towards electron attachment, with an electron adiabatic electron affinity (AEA) of 199.5 meV (233.1 meV with zero point energy correction) and 471.3 meV at the MP2 and CCSD(T) levels, respectively. In addition we present vertical detachment energies of 230.2 meV and 795.8 meV at the MP2, CCSD(T), respectively. The importance of the latter has to do with the ability of experimental detection of this value.
Resumo:
Two simple sensitive and reproducible spectrophotometric methods have been developed for the determination of metronidazole either in pure form or in their tablets. The proposed methods are based on the reduction of the nitro group to amino group of the drug. The reduction of metronidazole was carried out with zinc powder and 5 N hydrochloric acid at room temperature in methanol. The resulting amine was then subjected to a condensation reaction with aromatic aldehyde namely, vanillin and p-dimethyl amino benzaldehyde (PDAB) to yield yellow colored Schiff's bases. The formed Schiff's bases are quantified spectrophotometrically at their absorption maxima at 422 nm for vanillin and 494 nm for PDAB. Beer's law was obeyed in the concentration ranges 10 to 65 µg mL-1 and 5 to 40 µg mL-1 with a limit of detection (LOD) of 0.080 µg mL-1 and 0.090 µg mL-1 for vanillin and PDAB, respectively. The mean percentage recoveries were found to be 100.05 ± 0.37 and 99.01 ± 0.76 for the two methods respectively. The proposed methods were successfully applied to determine the metronidazole in their tablet formulations and the results compared favorably to that of reference methods. The proposed methods are recommended for quality control and routine analysis.
Resumo:
A spectrophotometric flow injection method for the determination of Zn(II) in ophthalmic formulations was developed. In this work, Zn(II) ion was complexed with Alizarin red S in borate buffer solution (pH 9.0) and the chromophore produced was monitored at 520 nm. The analytical curve was linear in the Zn(II) concentration range from 6.05 x 10-6 to 1.50 x 10-4 mol L-1 with a detection limit of 3.60 x 10-6 mol L-1. Recoveries ranged from 96.3 to 105 % and a relative standard deviation of 1.2 % (n = 10) for 5.5x10-5 mol L-1 Zn(II) reference solution were obtained. The sampling rate was 60 h-1 and the results obtained of Zn(II) in ophthalmic products using this procedure are in close agreement with those obtained using a comparative spectrophotometric procedure at 95 % confidence level.
Resumo:
An optode based on thymol blue (TB), an acid-based indicator, has been constructed and evaluated as a detector in FIA system for CO2 determination. The dye was chemically immobilised on the surface of a bifurcated glass optical fibre bundle, using silanisation in organic media. In FIA system, hydrogen carbonate or carbonate samples are injected in a buffer carrier solution, and then are mixed with phosphoric acid solution to generate CO2, which diffuses through a PTFE membrane, in order to be collected in an acceptor carrier fluid, pumped towards to detection cell, in which the optode was adapted. The proposed system presents two linear response ranges, from 1.0 x 10-3 to 1.0 x 10-2 mol l-1, and from 2.0 x 10-2 to 0.10 mol l-1. The sampling frequency was 11 sample h-1, with good repeatability (R.S.D < 4 %, n = 10). In flow conditions the optode lifetime was 170 h. The system was applied in the analysis of commercial mineral water and the results obtained in the hydrogen carbonate determination did not differ significantly from those obtained by potentiometry, at a confidence level of 95 %.