34 resultados para Damage identification in structures


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several matters of the pharmaceutical demonstrate the great importance of thermal analysis application, especially TG and DSC for the pharmaceutical industry future, namely: characterization of the drugs with the thermal events definition, in studies of drug purity, in the polymorphs identification, in compatibility studies of solid dosage pharmaceutical formulations, in drugs and pharmaceutical formulations thermal stability, and in determination of shelf life for isothermal degradation kinetics by extrapolation using the Arrhenius equation. Thus, the test results obtained from thermal analysis are directly related to the quality of a pharmaceutical product, whether the stability or bioavailability of the pharmaceutical product.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work addresses the use of chiral gas chromatography in resolving optically active stereoisomers and racemates found in fruit flavours. It presents the types of chiral selectors applied to terpene-derived metal coordination compounds, polysiloxane-linked α-amino acid and mixed chiral stationary phases, and focuses on derivatized cyclodextrins, the most popular chiral stationary phases presently used in chromatographic analysis. Knowledge about the techniques involved in chiral recognition and enantiomer identification in the fruit flavour field is given along with examples from the latest studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Superoxide (O2-) is the compound obtained when oxygen is reduced by one electron. For a molecule with an unpaired electron, O2- is surprisingly inert, its chief reaction being a dismutation in which it reacts with itself to form H2O2 and oxygen. The involvement of O2- in biological systems was first revealed by the discovery in 1969 of superoxide dismutase, an enzyme that catalyzes the dismutation of O2-. Since then it has been found that biological systems produce a bewildering variety of reactive oxidants, all but a few arising ultimately from O2-. These oxidants include O2- itself, H2O2 and alkyl peroxides, hydroxyl radical and other reactive oxidizing radicals, oxidized halogens and halamines, singlet oxygen, and peroxynitrite. These various oxidants are able to damage molecules in their environment, and are therefore very dangerous. They are thought to participate in the pathogenesis of a number of common diseases, including among others malignancy, by their ability to mutate the genome, and atherosclerosis, by their capacity for oxidizing lipoproteins. Their properties are put to good use, however, in host defense, where they serve as microbicidal and parasiticidal agents, and in biological signalling, where their liberation in small quantities results in redox-mediated changes in the functions of enzymes and other proteins

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The livers of Geophagus brasiliensis collected from both a non-polluted site and a polluted site were analyzed for different antioxidant defenses, O2 consumption, thiobarbituric acid-reactive substance (TBARS) levels, and histological damage. Compared to controls (116.6 ± 26.1 nmol g-1), TBARS levels were enhanced at the polluted site (284.2 ± 25.6 nmol g-1), as also was oxygen consumption (86.6 ± 11.3 and 128.5 ± 9.8 µmol O2 min-1 g-1, respectively). With respect to enzymatic antioxidants, increased catalase activities (8.7 ± 1.3 and 29.2 ± 2.4 mmol min-1 g-1, respectively), unchanged superoxide dismutase activities (767.2 ± 113.3 and 563.3 ± 70.2 U g-1, respectively), and diminished glutathione S-transferase activities (29.0 ± 3.2 and 14.9 ± 3.2 µmol min-1 g-1, respectively) were detected. Reduced glutathione (1.91 ± 0.17 and 1.37 ± 0.25 mM, respectively), oxidized glutathione (1.50 ± 0.20 and 0.73 ± 0.17 mM, respectively), and total glutathione (3.40 ± 0.26 and 2.07 ± 0.27 mM, respectively) concentrations were also below control values at the polluted site. Nevertheless, the observed ethoxyresorufin-O-deethylase activities (1.34 ± 0.11 and 16.7 ± 0.21 pmol min-1 mg-1, respectively) showed enhanced values at the polluted site. The main histological damage observed in the hepatocytes from fish collected at the polluted site was characterized by heavy lipid infiltration. Fish collected at the end of spring showed higher O2 consumption, higher superoxide dismutase and glutathione S-transferase activities, and higher total and oxidized glutathione concentrations compared to the beginning of autumn. No seasonal changes were observed in catalase activities, glutathione or TBARS levels. Fish chronically exposed to relatively high pollution levels seem to be unable to set up adequate antioxidant defenses, probably due to severe injury to their hepatocytes. The higher antioxidant defenses found at the end of spring are probably related to the enhanced activities during high temperature periods in thermoconforming organisms.