94 resultados para Control Model
Resumo:
Interactions between two species that result in reduced growth rates for both and extinction of one of the species are generally considered cases of asymmetric interspecific competition. Exploitative or interference competition is the usual mechanism invoked. Here we describe another mechanism producing the same result, named apparent competition through facilitation (ACF), observed between Melanoides tuberculata and Biomphalaria glabrata populations. The superior competitor actually gives some benefit to the other species, whose population becomes unstable with progressively increasing oscillations, leading to extinction. A model of ACF using difference equations suggests initial dynamics distinct from traditional interspecific competition. The dynamics of two freshwater snails in the field and in laboratory experiments suggest ACF, and these relations should be considered in studies of schistosomiasis control. ACF could occur in natural populations, but might have gone undetected because the final result is similar to traditional interspecific competition.
Resumo:
Resistance to infection by Leishmania major has been associated with the development of a Th1 type response that is dependent on the presence of interleukin 12 (IL-12). In this work the involvement of this cytokine in the response to infection by L. braziliensis, a less virulent species in the mouse model, was evaluated. Our results show that while interferon (IFN-g) deficient (-/-) mice inoculated L. braziliensis develop severe uncontrolled lesions, chronic lesions that remained under control up to 12 weeks of infection were observed in IL-12p40 -/- mice. IL 12p40 -/- mice had fewer parasites in their lesions than IFN-g-/- mice. Lymph node cells from IL-12p40 -/- were capable of producing low but consistent levels of IFN-g suggestive of its involvement in parasite control. Furthermore, as opposed to previous reports on L. major-infected animals, no switch to a Th2 response was observed in IL-12p40 -/- infected with L. braziliensis.
Resumo:
Biomphalaria tenagophila is very important for schistosomiasis transmission in Brazil. However its mechanisms of interaction with Schistosoma mansoni are still scantly studied. Since this snail displays strains highly susceptible or completely resistant to the parasite infection, the knowledge of that would be a useful tool to understand the mechanism of snail resistance. Particularly, the Taim strain consistently shows absolute resistance against the trematode, and this resistance is a dominant character. A multidisciplinary research group was created aiming at studying B. tenagophila/S. mansoni interaction. The possibility for applying the knowledge acquired to obtain a biological model for the control of S. mansoni transmission in endemic areas is discussed.
Resumo:
This work aimed to study the T helper type 1/2 (Th1/Th2) cytokine profile in a co-infection murine model of Plasmodium chabaudi chabaudi and Leishmania infantum. Expression of interferon-gamma (IFN-g) and interleukin-4 (IL-4) was analyzed, in spleen and liver of C57BL/6 mice, by reverse transcriptase-polymerase chain reaction. High levels of IFN-g expression did not prevent the progression of Leishmania in co-infected mice and Leishmania infection did not interfere with the Th1/Th2 switch necessary for Plasmodium control. The presence of IL-4 at day 28 in co-infected mice, essential for Plasmodium elimination, was probably a key factor on the exacerbation of the Leishmania infection.
Resumo:
This paper analyses the associations between Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) on the prevalence of schistosomiasis and the presence of Biomphalaria glabrata in the state of Minas Gerais (MG), Brazil. Additionally, vegetation, soil and shade fraction images were created using a Linear Spectral Mixture Model (LSMM) from the blue, red and infrared channels of the Moderate Resolution Imaging Spectroradiometer spaceborne sensor and the relationship between these images and the prevalence of schistosomiasis and the presence of B. glabrata was analysed. First, we found a high correlation between the vegetation fraction image and EVI and second, a high correlation between soil fraction image and NDVI. The results also indicate that there was a positive correlation between prevalence and the vegetation fraction image (July 2002), a negative correlation between prevalence and the soil fraction image (July 2002) and a positive correlation between B. glabrata and the shade fraction image (July 2002). This paper demonstrates that the LSMM variables can be used as a substitute for the standard vegetation indices (EVI and NDVI) to determine and delimit risk areas for B. glabrata and schistosomiasis in MG, which can be used to improve the allocation of resources for disease control.
Resumo:
Leprosy's progression and its maintained endemic status, despite the availability of effective treatments, are not fully understood and recent studies have highlighted the possibility of involved Mycobacterium leprae ambient reservoirs. Wild armadillos can carry leprosy and, because their meat is eaten by humans, development of the disease among armadillo meat consumers has been investigated. This study evaluated the frequency of armadillo meat intake among leprosy patients as well as age and gender matched controls with other skin diseases from a dermatological unit. Armadillo meat consumption among both groups was adjusted by demographic and socioeconomic covariates based on a conditional multiple logistic regression model. One hundred twenty-one cases and 242 controls were evaluated; they differed in socioeconomic variables such as family income, hometown population and access to treated water. The multivariate analysis did not show an association between the intake of armadillo meat and leprosy (odds ratio = 1.07; CI 95% 0.56-2.04), even when only cases with no known contacts were analyzed. We conclude that leprosy is not associated with the intake of armadillo meat in these patients.
Resumo:
The present study evaluated the anti-inflammatory and analgesic properties of Agave sisalana Perrine in classic models of inflammation and pain. The hexanic fraction of A. sisalana (HFAS) was obtained by acid hydrolysis followed by hexanic reflux. Anti-inflammatory properties were examined in three acute mouse models (xylene ear oedema, hind paw oedema and pleurisy) and a chronic mouse model (granuloma cotton pellet). The antinociceptive potential was evaluated in chemical (acetic-acid) and thermal (tail-flick and hot-plate test) models of pain. When given orally, HFAS (5, 10, 25 and 50 mg/kg) reduced ear oedema (p < 0.0001; 52%, 71%, 62% and 42%, respectively). HFAS also reduced hind paw oedema at doses of 10 mg/kg and 25 mg/kg (p < 0.05; 42% and 58%, respectively) and pleurisy at doses of 10 mg/kg and 25 mg/kg (41% and 50%, respectively). In a chronic model, HFAS reduced inflammation by 46% and 58% at doses of 10 mg/kg and 25 mg/kg, respectively. Moreover, this fraction showed analgesic properties against the abdominal writhing in an acetic acid model (at doses of 5-25 mg/kg) with inhibitory rates of 24%, 54% and 48%. The HFAS also showed an increased latency time in the hot-plate (23% and 28%) and tail-flick tests (61% and 66%) for the 25 mg/kg and 50 mg/kg doses, respectively. These results suggest that HFAS has anti-inflammatory and analgesic properties.
Resumo:
The dynamics of the control of Aedes (Stegomyia) aegypti Linnaeus, (Diptera, Culicidae) by Bacillus thuringiensis var israelensis has been related with the temperature, density and concentration of the insecticide. A mathematical model for biological control of Aedes aegypti with Bacillus thuringiensis var israelensis (Bti) was constructed by using data from the literature regarding the biology of the vector. The life cycle was described by differential equations. Lethal concentrations (LC50 and LC95) of Bti were determined in the laboratory under different experimental conditions. Temperature, colony, larvae density and bioinsecticide concentration presented marked differences in the analysis of the whole set of variables; although when analyzed individually, only the temperature and concentration showed changes. The simulations indicated an inverse relationship between temperature and mosquito population, nonetheless, faster growth of populations is reached at higher temperatures. As conclusion, the model suggests the use of integrated control strategies for immature and adult mosquitoes in order to achieve a reduction of Aedes aegypti.
Resumo:
Soil organic matter (SOM) plays an important role in carbon (C) cycle and soil quality. Considering the complexity of factors that control SOM cycling and the long time it usually takes to observe changes in SOM stocks, modeling constitutes a very important tool to understand SOM cycling in forest soils. The following hypotheses were tested: (i) soil organic carbon (SOC) stocks would be higher after several rotations of eucalyptus than in low-productivity pastures; (ii) SOC values simulated by the Century model would describe the data better than the mean of observations. So, the aims of the current study were: (i) to evaluate the SOM dynamics using the Century model to simulate the changes of C stocks for two eucalyptus chronosequences in the Rio Doce Valley, Minas Gerais State, Brazil; and (ii) to compare the C stocks simulated by Century with the C stocks measured in soils of different Orders and regions of the Rio Doce Valley growing eucalyptus. In Belo Oriente (BO), short-rotation eucalyptus plantations had been cultivated for 4.0; 13.0, 22.0, 32.0 and 34.0 years, at a lower elevation and in a warmer climate, while in Virginópolis (VG), these time periods were 8.0, 19.0 and 33.0 years, at a higher elevation and in a milder climate. Soil samples were collected from the 0-20 cm layer to estimate C stocks. Results indicate that the C stocks simulated by the Century model decreased after 37 years of poorly managed pastures in areas previously covered by native forest in the regions of BO and VG. The substitution of poorly managed pastures by eucalyptus in the early 1970´s led to an average increase of C of 0.28 and 0.42 t ha-1 year-1 in BO and VG, respectively. The measured C stocks under eucalyptus in distinct soil Orders and independent regions with variable edapho-climate conditions were not far from the values estimated by the Century model (root mean square error - RMSE = 20.9; model efficiency - EF = 0.29) despite the opposite result obtained with the statistical procedure to test the identity of analytical methods. Only for lower soil C stocks, the model over-estimated the C stock in the 0-20 cm layer. Thus, the Century model is highly promising to detect changes in C stocks in distinct soil orders under eucalyptus, as well as to indicate the impact of harvest residue management on SOM in future rotations.
Resumo:
Mathematical models have great potential to support land use planning, with the goal of improving water and land quality. Before using a model, however, the model must demonstrate that it can correctly simulate the hydrological and erosive processes of a given site. The SWAT model (Soil and Water Assessment Tool) was developed in the United States to evaluate the effects of conservation agriculture on hydrological processes and water quality at the watershed scale. This model was initially proposed for use without calibration, which would eliminate the need for measured hydro-sedimentologic data. In this study, the SWAT model was evaluated in a small rural watershed (1.19 km²) located on the basalt slopes of the state of Rio Grande do Sul in southern Brazil, where farmers have been using cover crops associated with minimum tillage to control soil erosion. Values simulated by the model were compared with measured hydro-sedimentological data. Results for surface and total runoff on a daily basis were considered unsatisfactory (Nash-Sutcliffe efficiency coefficient - NSE < 0.5). However simulation results on monthly and annual scales were significantly better. With regard to the erosion process, the simulated sediment yields for all years of the study were unsatisfactory in comparison with the observed values on a daily and monthly basis (NSE values < -6), and overestimated the annual sediment yield by more than 100 %.
Resumo:
Field studies were established in Zavalla and Oliveros, Argentina, during four years in order to optimize Johnsongrass (Sorghum halepense (L.) Pers.) chemical control by means of the thermal calendar model in comparison with other criteria (weed height or days after sowing). The effect of three application dates of postemergence herbicides was determined by visual control, density of tillers originated from rhizome bud regrowth, and from crown and shoot bud regrowth, and soybean yield. Following the thermal calendar model criterion, applications during the second date afforded the best control. Weed height for the first date showed little variability between experiments but was highly variable in the second and third application dates, achieving in some cases values greater than 120 cm. For all years, no significant differences were detected for crop yield between the first and second application dates, and yields were always lower for the third date. The greatest rhizome bud regrowth was observed for the earliest application date and the highest crown and shoot bud regrowth was determined for the last application date. Parameters associated with control efficiency showed the best behaviour for the second date. However, plant height at this moment may interfere with herbicide application and the variability exhibited by this parameter highlights the risk of determining control timing using only one decision criterion.
Resumo:
The objective of this work was to evaluate the water flow computer model, WATABLE, using experimental field observations on water table management plots from a site located near Hastings, FL, USA. The experimental field had scale drainage systems with provisions for subirrigation with buried microirrigation and conventional seepage irrigation systems. Potato (Solanum tuberosum L.) growing seasons from years 1996 and 1997 were used to simulate the hydrology of the area. Water table levels, precipitation, irrigation and runoff volumes were continuously monitored. The model simulated the water movement from a buried microirrigation line source and the response of the water table to irrigation, precipitation, evapotranspiration, and deep percolation. The model was calibrated and verified by comparing simulated results with experimental field observations. The model performed very well in simulating seasonal runoff, irrigation volumes, and water table levels during crop growth. The two-dimensional model can be used to investigate different irrigation strategies involving water table management control. Applications of the model include optimization of the water table depth for each growth stage, and duration, frequency, and rate of irrigation.
Resumo:
The aim of this study was to determine the minimum conditions of wetness duration and mean temperature required for Fusarium head blight infection in wheat. The weather model developed by Zoldan (2008) was tested in field experiments for two wheat cultivars grown in 2005 (five sowing dates) and 2006 (six sowing dates) in 10 m² plots with three replicates. The disease was assessed according to head incidence (HI), spikelet incidence (SI), and the interaction between these two methods was called head blight severity (HBS). Starting at the beginning of anthesis, air temperature and head wetness duration were daily recorded with an automatic weather station. With the combination of these two factors, a weather favorability table was built for the disease occurrence. Starting on the day of flowering beginning (1 - 5% fully exserted anthers), the sum of daily values for infection favorability (SDVIF) was calculated by means of a computer program, according to Zoldan (2008) table. The initial symptoms of the disease were observed at 3.7% spikelet incidence, corresponding to 2.6 SVDFI. The infection occurs in wheat due to rainfall which results in spike wetting of > 61.4 h duration. Rainfall events forecast can help time fungicide application to control FHB. The name of this alert system is proposed as UPF-scab alert.
Resumo:
This work is a study of the implementation of a classical controller using a tuning method referred to as IMC (Internal Model Control) and aimed at the reduction of electrical energy consumption by the appropriate relation between energy consumption and the cooling time with forced air. The supervisory system installed was able to manipulate the variable of frequency of the signal power of the exhaust fan engine (forced air module), to accelerate or decelerate the loss of heat from the product to be cooled by airflow variation that passes through the mass of the produce. The results demonstrated a reduction in energy consumption from 64% and an increase of only 8% in the cooling time to the system using PI/IMC (Proportional - Integral with IMC) tuning method compared with the system in its operating nominal condition. This PI/IMC control may be implemented directly in a frequency converter, without the need to purchase a computer or PLC (programmable logic controller) to run the dedicated application, increasing its economical viability.
Resumo:
The objective of this study was to model mathematically and to simulate the dynamic behavior of an auger-type fertilizer applicator (AFA) in order to use the variable-rate application (VRA) and reduce the coefficient of variation (CV) of the application, proposing an angular speed controller θ' for the motor drive shaft. The input model was θ' and the response was the fertilizer mass flow, due to the construction, density of fertilizer, fill factor and the end position of the auger. The model was used to simulate a control system in open loop, with an electric drive for AFA using an armature voltage (V A) controller. By introducing a sinusoidal excitation signal in V A with amplitude and delay phase optimized and varying θ' during an operation cycle, it is obtained a reduction of 29.8% in the CV (constant V A) to 11.4%. The development of the mathematical model was a first step towards the introduction of electric drive systems and closed loop control for the implementation of AFA with low CV in VRA.