41 resultados para Computational tools


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work deals with an hybrid PID+fuzzy logic controller applied to control the machine tool biaxial table motions. The non-linear model includes backlash and the axis elasticity. Two PID controllers do the primary table control. A third PID+fuzzy controller has a cross coupled structure whose function is to minimise the trajectory contour errors. Once with the three PID controllers tuned, the system is simulated with and without the third controller. The responses results are plotted and compared to analyse the effectiveness of this hybrid controller over the system. They show that the proposed methodology reduces the contour error in a proportion of 70:1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Shadow Moiré fringe patterns are level lines of equal depth generated by interference between a master grid and its shadow projected on the surface. In simplistic approach, the minimum error is about the order of the master grid pitch, that is, always larger than 0,1 mm, resulting in an experimental technique of low precision. The use of a phase shift increases the accuracy of the Shadow Moiré technique. The current work uses the phase shifting method to determine the surfaces three-dimensional shape using isothamic fringe patterns and digital image processing. The current study presents the method and applies it to images obtained by simulation for error evaluation, as well as to a buckled plate, obtaining excellent results. The method hands itself particularly useful to decrease the errors in the interpretation of the Moiré fringes that can adversely affect the calculations of displacements in pieces containing many concave and convex regions in relatively small areas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Products developed at industries, institutes and research centers are expected to have high level of quality and performance, having a minimum waste, which require efficient and robust tools to numerically simulate stringent project conditions with great reliability. In this context, Computational Fluid Dynamics (CFD) plays an important role and the present work shows two numerical algorithms that are used in the CFD community to solve the Euler and Navier-Stokes equations applied to typical aerospace and aeronautical problems. Particularly, unstructured discretization of the spatial domain has gained special attention by the international community due to its ease in discretizing complex spatial domains. This work has the main objective of illustrating some advantages and disadvantages of numerical algorithms using structured and unstructured spatial discretization of the flow governing equations. Numerical methods include a finite volume formulation and the Euler and Navier-Stokes equations are applied to solve a transonic nozzle problem, a low supersonic airfoil problem and a hypersonic inlet problem. In a structured context, these problems are solved using MacCormack’s implicit algorithm with Steger and Warming’s flux vector splitting technique, while, in an unstructured context, Jameson and Mavriplis’ explicit algorithm is used. Convergence acceleration is obtained using a spatially variable time stepping procedure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The evolution of digital circuit technology, leadind to higher speeds and more reliability allowed the development of machine controllers adapted to new production systems (e.g., Flexible Manufacturing Systems - FMS). Most of the controllers are developed in agreement with the CNC technology of the correspondent machine tool manufacturer. Any alterations or adaptation of their components are not easy to be implemented. The machine designers face up hardware and software restrictions such as lack of interaction among system's elements and impossibility of adding new function. This is due to hardware incompatibility and to software not allowing alterations in the source program. The introduction of open architecture philosophy propitiated the evolution of a new generation of numeric controllers. This brought the conventional CNC technology to the standard IBM - PC microcomputer. As a consequence, the characteristics of the CNC (positioning) and the microcomputer (easy of programming, system configuration, network communication etc) are combined. Some researchers have addressed a flexible structure of software and hardware allowing changes in the hardware basic configuration and all control software levels. In this work, the development of open architecture controllers in the OSACA, OMAC, HOAM-CNC and OSEC architectures is described.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In simple terms, a phytosociological survey is a group of ecological evaluation methods whose aim is to provide a comprehensive overview of both the composition and distribution of plant species in a given plant community. To understand the applicability of phytosociological surveys for weed science, as well as their validity, their ecological basis should be understood and the most suitable ones need to be chosen, because cultivated fields present a relatively distinct group of selecting factors when compared to natural plant communities. For weed science, the following sequence of steps is proposed as the most suitable: (1) overall infestation; (2) phytosociological tables/graphs; (3) intra-characterization by diversity; (4) inter-characterization and grouping by cluster analysis. A summary of methods is established in order to assist Weed Science researchers through their steps into the realm of phytosociology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent research has shown that receptor-ligand interactions between surfaces of communicating cells are necessary prerequisites for cell proliferation, cell differentiation and immune defense. Cell-adhesion events have also been proposed for pathological conditions such as cancer growth, metastasis, and host-cell invasion by parasites such as Trypanosoma cruzi. RNA and DNA aptamers (aptus = Latin, fit) that have been selected from combinatorial nucleic acid libraries are capable of binding to cell-adhesion receptors leading to a halt in cellular processes induced by outside signals as a consequence of blockage of receptor-ligand interactions. We outline here a novel approach using RNA aptamers that bind to T. cruzi receptors and interrupt host-cell invasion in analogy to existing procedures of blocking selectin adhesion and function in vitro and in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Clinical decision support systems are useful tools for assisting physicians to diagnose complex illnesses. Schizophrenia is a complex, heterogeneous and incapacitating mental disorder that should be detected as early as possible to avoid a most serious outcome. These artificial intelligence systems might be useful in the early detection of schizophrenia disorder. The objective of the present study was to describe the development of such a clinical decision support system for the diagnosis of schizophrenia spectrum disorders (SADDESQ). The development of this system is described in four stages: knowledge acquisition, knowledge organization, the development of a computer-assisted model, and the evaluation of the system's performance. The knowledge was extracted from an expert through open interviews. These interviews aimed to explore the expert's diagnostic decision-making process for the diagnosis of schizophrenia. A graph methodology was employed to identify the elements involved in the reasoning process. Knowledge was first organized and modeled by means of algorithms and then transferred to a computational model created by the covering approach. The performance assessment involved the comparison of the diagnoses of 38 clinical vignettes between an expert and the SADDESQ. The results showed a relatively low rate of misclassification (18-34%) and a good performance by SADDESQ in the diagnosis of schizophrenia, with an accuracy of 66-82%. The accuracy was higher when schizophreniform disorder was considered as the presence of schizophrenia disorder. Although these results are preliminary, the SADDESQ has exhibited a satisfactory performance, which needs to be further evaluated within a clinical setting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Motivated by a recently proposed biologically inspired face recognition approach, we investigated the relation between human behavior and a computational model based on Fourier-Bessel (FB) spatial patterns. We measured human recognition performance of FB filtered face images using an 8-alternative forced-choice method. Test stimuli were generated by converting the images from the spatial to the FB domain, filtering the resulting coefficients with a band-pass filter, and finally taking the inverse FB transformation of the filtered coefficients. The performance of the computational models was tested using a simulation of the psychophysical experiment. In the FB model, face images were first filtered by simulated V1- type neurons and later analyzed globally for their content of FB components. In general, there was a higher human contrast sensitivity to radially than to angularly filtered images, but both functions peaked at the 11.3-16 frequency interval. The FB-based model presented similar behavior with regard to peak position and relative sensitivity, but had a wider frequency band width and a narrower response range. The response pattern of two alternative models, based on local FB analysis and on raw luminance, strongly diverged from the human behavior patterns. These results suggest that human performance can be constrained by the type of information conveyed by polar patterns, and consequently that humans might use FB-like spatial patterns in face processing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exposure to air pollutants is associated with hospitalizations due to pneumonia in children. We hypothesized the length of hospitalization due to pneumonia may be dependent on air pollutant concentrations. Therefore, we built a computational model using fuzzy logic tools to predict the mean time of hospitalization due to pneumonia in children living in São José dos Campos, SP, Brazil. The model was built with four inputs related to pollutant concentrations and effective temperature, and the output was related to the mean length of hospitalization. Each input had two membership functions and the output had four membership functions, generating 16 rules. The model was validated against real data, and a receiver operating characteristic (ROC) curve was constructed to evaluate model performance. The values predicted by the model were significantly correlated with real data. Sulfur dioxide and particulate matter significantly predicted the mean length of hospitalization in lags 0, 1, and 2. This model can contribute to the care provided to children with pneumonia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In-package pasteurization is the most used method for beer microbiological stabilization. The search for safer and better quality food has created a need to better understand the processes involved in producing it. However, little is known about the temperature and velocity profiles during the thermal processes of liquid foods in commercial packaging, which results in over-dimensioned processes to guarantee safety, decreasing the sensorial and nutritional characteristics of the product and increasing process costs. Simulations using Computational Fluid-Dynamics (CFD) have been used by various authors to evaluate those processes. The objective of the present paper was to evaluate the effect of packaging orientation in the pasteurization of beer in a commercial aluminum can using CFD. A heating process was simulated at 60 ºC up to 15 PUs (a conventional beer process, in which 1 Pasteurization Unit (PU) is equivalent to 1minute at 60 ºC). The temperature profile and convection current velocity along the process and the variation of the PUs were evaluated in relation to time considering the cans in the conventional, inverted, and horizontal positions. The temperature and velocity profiles were similar to those presented in the literature. The package position did not result in process improvement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Food processes must ensure safety and high-quality products for a growing demand consumer creating the need for better knowledge of its unit operations. The Computational Fluid Dynamics (CFD) has been widely used for better understanding the food thermal processes, and it is one of the safest and most frequently used methods for food preservation. However, there is no single study in the literature describing thermal process of liquid foods in a brick shaped package. The present study evaluated such process and the influence of its orientation on the process lethality. It demonstrated the potential of using CFD to evaluate thermal processes of liquid foods and the importance of rheological characterization and convection in thermal processing of liquid foods. It also showed that packaging orientation does not result in different sterilization values during thermal process of the evaluated fluids in the brick shaped package.