33 resultados para Absorption biphasique
Resumo:
Effective statin therapy is associated with a marked reduction of cardiovascular events. However, the explanation for full benefits obtained for LDL cholesterol targets by combined lipid-lowering therapy is controversial. Our study compared the effects of two equally effective lipid-lowering strategies on markers of cholesterol synthesis and absorption. A prospective, open label, randomized, parallel design study, with blinded endpoints, included 116 subjects. We compared the effects of a 12-week treatment with 40 mg rosuvastatin or the combination of 40 mg simvastatin/10 mg ezetimibe on markers of cholesterol absorption (campesterol and β-sitosterol), synthesis (desmosterol), and their ratios to cholesterol. Both therapies similarly decreased total and LDL cholesterol, triglycerides and apolipoprotein B, and increased apolipoprotein A1 (P < 0.05 vs baseline for all). Simvastatin/ezetimibe increased plasma desmosterol (P = 0.012 vs baseline), and decreased campesterol and β-sitosterol (P < 0.0001 vs baseline for both), with higher desmosterol (P = 0.007) and lower campesterol and β-sitosterol compared to rosuvastatin, (P < 0.0001, for both). In addition, rosuvastatin increased the ratios of these markers to cholesterol (P < 0.002 vs baseline for all), whereas simvastatin/ezetimibe significantly decreased the campesterol/cholesterol ratio (P = 0.008 vs baseline) and tripled the desmosterol/cholesterol ratio (P < 0.0001 vs baseline). The campesterol/cholesterol and β-sitosterol/cholesterol ratios were lower, whereas the desmosterol/cholesterol ratio was higher in patients receiving simvastatin/ezetimibe (P < 0.0001 vs rosuvastatin, for all). Pronounced differences in markers of cholesterol absorption and synthesis were observed between two equally effective lipid-lowering strategies.
Resumo:
The Graphite furnace atomic absorption spectrometry (GF AAS) was the technique chosen by the inorganic contamination laboratory (INCQ/ FIOCRUZ) to be validated and applied in routine analysis for arsenic detection and quantification. The selectivity, linearity, sensibility, detection, and quantification limits besides accuracy and precision parameters were studied and optimized under Stabilized Temperature Platform Furnace (STPF) conditions. The limit of detection obtained was 0.13 µg.L-1 and the limit of quantification was 1.04 µg.L-1, with an average precision, for total arsenic, less than 15% and an accuracy of 96%. To quantify the chemical species As(III) and As(V), an ion-exchange resin (Dowex 1X8, Cl- form) was used and the physical-chemical parameters were optimized resulting in a recuperation of 98% of As(III) and of 90% of As(V). The method was applied to groundwater, mineral water, and hemodialysis purified water samples. All results obtained were lower than the maximum limit values established by the legal Brazilian regulations, in effect, 50, 10, and 5 µg.L-1 para As total, As(III) e As(V), respectively. All results were statistically evaluated.
Resumo:
The purpose of this study was to investigate and model the water absorption process by corn kernels with different levels of mechanical damage Corn kernels of AG 1510 variety with moisture content of 14.2 (% d.b.) were used. Different mechanical damage levels were indirectly evaluated by electrical conductivity measurements. The absorption process was based on the industrial corn wet milling process, in which the product was soaked with a 0.2% sulfur dioxide (SO2) solution and 0.55% lactic acid (C3H6O3) in distilled water, under controlled temperatures of 40, 50, 60, and 70 ºC and different mechanical damage levels. The Peleg model was used for the analysis and modeling of water absorption process. The conclusion is that the structural changes caused by the mechanical damage to the corn kernels influenced the initial rates of water absorption, which were higher for the most damaged kernels, and they also changed the equilibrium moisture contents of the kernels. The Peleg model was well adjusted to the experimental data presenting satisfactory values for the analyzed statistic parameters for all temperatures regardless of the damage level of the corn kernels.