668 resultados para Resistência dinâmica
Resumo:
The present review summarizes the most relevant results of our research group obtained recently in the field of unimolecular reaction dynamics. The following processes are specifically analyzed: the isomerization, dissociation and elimination in methyl nitrite, the fragmentation reactions of the mercaptomethyl cation, the C-CO dissociation in the acetyl and propionyl radicals, and the decomposition of vinyl fluoride. In all the cases, only state- or energy-selected systems are considered. Special emphasis is paid to the possibility of systems exhibiting non-statistical behavior.
Resumo:
The structure and hydration of the HNP-3 have been derived from molecular dynamics data using root mean square deviation, radial and energy distributions. Three antiparallel beta sheets were found to be preserved. 15 intramolecular hydrogen bonds were identified together with 36 hydrogen bonds on the backbone and 35 on the side chain atoms. From the point of view of the hydration dynamics, the analysis shows a high solvent accessibility of the monomer and attractive interactions with water molecules.
Resumo:
In this work we present a theoretical model to investigate the scattering of Xe and Ne by a liquid squalane surface. The liquid surface is modeled as a grid of harmonic oscillators with frequencies adjusted to experimental vibration as frequencies of the liquid squalane and the atom-surface interaction potential is modeled by a Lennard-Jones function. The three dimensional description of the dynamics of the process which occurs at the gas-liquid interface is obtained by the classical trajectory method. The general characteristics of the dynamics of the scattering process are in good agreement with experimental data.
Resumo:
A simple low-cost flow cell was developed, built and optimized in order to observe dynamic interfacial tension of continuous flow systems. Distinct materials can be used in one of the cell walls in order to observe the intermolecular forces between the flowing liquid and the chemical constitution of the walls. The fluorescence depolarization was evaluated using Rhodamine B as fluorescent probe seeded in ethylene glycol. The effects of the positioning angles on the data acquired across the cell are reported. The reproducibility of the data was evaluated with a spectrometer assembled in-house and the relative standard deviation was below 3%.
Resumo:
Gaseous mercury sampling conditions were optimized and a dynamic flux chamber was used to measure the air/surface exchange of mercury in some areas of the Negro river basin with different vegetal coverings. At the two forest sites (flooding and non-flooding), low mercury fluxes were observed: maximum of 3 pmol m-2 h-1 - day and minimum of -1 pmol m-2 h-1 - night. At the deforested site, the mercury fluxes were higher and always positive: maximum of 26 pmol m-2 h-1 - day and 17 pmol m-2 h-1 - night. Our results showed that deforestation could be responsible for significantly increasing soil Hg emissions, mainly because of the high soil temperatures reached at deforested sites.
Resumo:
This article provides an overview on the recent achievements to combat Gram-positive bacteria and the mechanisms related to antimicrobial activity and bacterial resistance. Selected synthetic methodologies to access structurally diverse bioactive compounds are presented in order to emphasize the most important substances currently developed to overcome multiresistant strains. The main properties of vancomycin and related glycopeptide antibiotics are also discussed as a background to understanding the design of new chemotherapeutic agents.
Resumo:
Thermosensitive hydrogels were synthesized using alginate-Ca2+ in association with a thermosensitive polymer, such as PNIPAAm. The mechanical properties of the hydrogels were determined measuring the maximum tension of deformation. With the increase of the temperature by 25 to 40 ºC above the LCST the chains of PNIPAAm collapsed, dragging the alginate net and diminishing the size of the pores. The decrease in the size of the pores of the hydrogel was followed by an increase in the mechanicals resistance of the material.
Resumo:
New chemical systems have been recently designed for the study of complex phenomena such as oscillatory dynamics in the temporal domain and spatiotemporal pattern formation. Systems derived from oscillators based on the chemistry of bromate are the most extensively studied, with the celebrated Belousov-Zhabotinsky (BZ) reaction being the most popular example. Problems such as the formation of bubbles (CO2) and solid precipitate in the course of the reaction and the occurrence of simply short-lived oscillations under batch conditions are very common and, in some cases, compromise the use of some of these systems. It is investigated in this paper the dynamic behavior of the bromate/hypophosphite/acetone/dual catalyst system, which has been sugested as an interesting alternative to circumvent those inconvenients. In this work, manganese and ferroin are employed as catalysts and the complete system (BrO3-/H2PO2-/acetone/Mn(II)-ferroin) is studied under batch conditions. Temporal symmetry breaking was studied in a reactor under agitation by means of simultaneous records of the potential changes of platinum and Ag/AgBr electrodes, both measured versus a reversible hydrogen electrode. Additionally, spatio-temporal formation of target patterns and spiral waves were obtained when the oscillating mixture was placed in a quasi two-dimensional reactor.
Resumo:
Multidrug resistance, MDR is a major obstacle for cancer chemotherapy. MDR can be reversed by drugs that vary in their chemical structure and main biological activity. Many efforts have been done to overcome MDR based on studies of structure-activity relationships and in this review we summarize some aspects of MDR mediated by P-glycoprotein (P-gp), as the most experimentally and clinically tested form of drug resistance. The most significant MDR mechanisms revealed until now are shortly discussed. Physicochemical and structural properties of MDR modulators, measures of the MDR reversal, and QSAR studies are included.
Resumo:
Antibiotic resistance has been growing at an alarming rate and consequently the arsenal of effective antibiotics against Gram-negative and Gram-positive bacteria has dropped dramatically. In this sense there is a strong need to produce new substances that not only have good spectrum of activity, but having new mechanisms of action. In this regard, this paper emphasizes the coordination of metals to antibiotics as a strategy for reversing antibiotic resistance and production of new drugs, with a special focus on quinolones, fluoroquinolones, sulfonamides and tetracyclines.
Resumo:
This work has compared the surfaces of two different steel samples used as orthopedical implants, classified as ASTM F138 and ISO5832-9, through optical emission spectroscopy, by means of SEM and EDS. The samples (implants) were also submitted to potentiodynamic cyclic polarization in Ringer lactate and NaCl 0.9 M L-1 solutions; ISO5832-9 sample did not show any kind of localized corrosion, but in the case of F138 steel was observed a pit localized corrosion in both solutions. In Ringer lactate solution it was observed a loss of about 63% for nickel and 26% for iron for F138 stell, compared to the initial composition.
Resumo:
The triterpenoids oleanolic (OA) and ursolic (UA) acids show non-selective antiinflamatory activity in vitro for cyclooxygenase (COX) isoforms. 3D conformations of OA and UA, with three possible orientations (1, 1' and 2) in the active site of isoforms COX, obtained by docking, were submitted to molecular dynamics. The results show that orientation 2 of the OA in COX-2 is more favorable because orientation 1 moved away from the active site. The carboxylate group of OA interact by hydrogen bonds with Ser353 and with Phe357 and Leu359, mediated by water, while hydroxyl in C-3 interact by hydrogen bond, mediated by water, with Tyr385.
Resumo:
We present in this work the influence of temperature on the dynamics of homogeneous chemical systems containing bromate and 1,4-cyclohexanedione (1,4-CHD) in acidic media. In particular, the following systems were studied: bromate/1,4-CHD/acid, bromate/1,4-CHD/ferroin/acid and bromate/1,4-CHD/trisbipyridine ruthenium/acid. Investigations were carried out by means of an electrochemical probe, at five temperatures between 5 and 45 °C. Activation energies (Ea) were estimated in different ways for the pre-oscillatory and oscillatory regimes. In any case, the Ea was found to depend on the catalyst, composition and initial concentrations. In addition, it was observed that ferroin and trisbipyridine ruthenium act as catalysts only during the transition between the induction period and oscillatory regime.
Resumo:
Potential energy and dipole moment curves for the HCl molecule were computed. Calculations were performed at different levels of theory (DFT, MRCI). Spectroscopic properties are reported and compared with experimental data, for validating the theoretical approaches. Interaction of infrared radiation with HCl is simulated using the wave packet formalism. The quantum control model for population dynamics of the vibrational levels, based on pi-pulse theory, is applied. The results demonstrate that wavepackets with specific composition can be built with short infrared laser pulses and provide the basis for studies of H + HCl collision dynamics with infrared laser excitation.
Resumo:
The nonlinear analysis of a general mixed second order reaction was performed, aiming to explore some basic tools concerning the mathematics of nonlinear differential equations. Concepts of stability around fixed points based on linear stability analysis are introduced, together with phase plane and integral curves. The main focus is the chemical relationship between changes of limiting reagent and transcritical bifurcation, and the investigation underlying the conclusion.