440 resultados para Contaminação da água
Resumo:
O cultivo protegido na cultura da videira apresenta-se como uma alternativa na diminuição da incidência de doenças fúngicas em regiões que apresentam excesso de chuvas. A utilização de cobertura plástica sobre as linhas de cultivo da videira ocasiona modificações no microclima ao redor da planta, principalmente pela ausência de água livre sobre folhas e frutos. Estas alterações propiciam condições desfavoráveis ao desenvolvimento de doenças fúngicas, com a menor necessidade do uso de fungicidas, como as podridões de cachos, que atualmente são um dos maiores problemas no controle fitossanitário, em regiões produtoras tradicionais, como a Serra Gaúcha. Todavia, o oídio da videira que outrora não apresentava incidência em condições de alta umidade relativa, em condições de cultivo protegido, deve ser monitorado. Outro aspecto que merece cautela é o uso de fungicidas, pois destaca-se que, pela redução de radiação ultravioleta e ausência de chuvas sobre os cachos, devido ao uso da cobertura plástica, o período residual dos fungicidas é prolongado. Este maior acúmulo é preocupante, tanto nas uvas destinadas ao consumo in natura, que afeta diretamente o consumidor, quanto às destinadas à vinificação, que prejudica a atuação das leveduras na fermentação dos vinhos. De forma geral, a tecnologia de cobrimento dos vinhedos é eficaz no controle de doenças fúngicas e na redução do uso de fungicidas, contudo deve ser considerada como um novo sistema de produção, principalmente por exigir um manejo fitossanitário distinto em relação ao cultivo convencional. Os plásticos de cobertura, usados, devem ser considerados resíduo agrícola, exigindo cuidados específicos para que seja evitada contaminação ambiental.
Resumo:
A bananeira cv. D´Angola demanda grandes quantidades de nutrientes para seu desenvolvimento e produção. Para uma recomendação adequada de fertilizantes, é importante que se conheçam as quantidades de nutrientes absorvidas, exportadas e restituídas ao solo pela planta. Objetivou-se avaliar os acúmulos de fitomassa e macronutrientes na bananeira cv. D´Angola (tipo Terra), em cinco doses de nitrogênio (N) aplicado em fertirrigação por gotejamento. O trabalho foi desenvolvido no campo da Embrapa Mandioca e Fruticultura, no município de Cruz das Almas-BA, em delineamento experimental em blocos casualizados, com quatro repetições. Avaliaram-se a fitomassa e o acúmulo de nutrientes em cinco órgãos da planta (pseudocaule, folhas, frutos, engaço e coração), em cinco doses de N (135; 180; 225; 270 e 315 kg ha-1) aplicadas via água de irrigação. Os resultados indicaram que o acúmulo de fitomassa e nutrientes para a bananeira cv. D´Angola mostrou que há diferentes níveis de absorção, exportação e restituição ao solo de macronutrientes entre os órgãos da planta, em função das doses de N, e que, em média, o pseudocaule e as folhas foram os órgãos que mais acumularam de nutrientes, enquanto o coração foi o que menos acumulou. A ordem decrescente de absorção na planta foi potássio, seguido por nitrogênio e cálcio.
Resumo:
OBJETIVO: Este trabalho tem por objetivo apresentar a estrutura solidamente estabelecida de rastreabilidade dos padrões ionométricos e do sistema de medidas com dosímetros termoluminescentes, como parte da confiabilidade do Programa de Qualidade em Dosimetria (PQD), que visa a garantir o mais elevado nível de exatidão às suas medidas. MATERIAIS E MÉTODOS: A exemplo de outros programas, usaram-se dosímetros termoluminescentes (DTL 937) na forma de pó, colocados em uma cápsula de plástico, em "kits" específicos para cada aplicação, os quais foram enviados, por via postal, aos centros participantes. RESULTADOS: Os resultados da intercomparação realizada entre o Laboratório de Ciências Radiológicas da Universidade do Estado do Rio de Janeiro e o EQUAL-ESTRO para o feixe de raios gama de 60Co, expressos para (1sigma), e os resultados das medidas de dose absorvida, obtidos com as câmaras dp Programa EQUAL e as câmaras do PQD, apresentaram discordância menor que 0,5%. CONCLUSÃO: Dos resultados conclui-se que o PQD alcançou o nível desejado de confiabilidade, necessário à implementação do Programa.
Resumo:
This paper reviews the history of Hg contamination in Brazil by characterizing and quantifying two major sources of Hg emissions to the environment: industrial sources and gold mining. Industry was responsible for nearly 100% of total Hg emissions from the late 1940's to the early 1970's, when efficient control policies were enforced, leading to a decrease in emissions. Gold mining, on the other hand was nearly insignificant as a Hg source up to the late 1970's, but presently is responsible for over 80% of total emissions. Presently, over 115 tons of Hg are released into the atmosphere in Brazil annually. Nearly 78 tons come from gold mining operations, 12 tons come from chlor-alkali industry and 25 tons come from all other industrial uses. Inputs to soils and waters however, are still unknown, due to lack of detailed data base. However, emissions from diffuse sources rather than well studied classical industrial sources are probably responsible for the major inputs of mercury to these compartments.
Resumo:
The most common difficulties which occur in trace analysis are those which involve contamination, mainly when the measurement is at very low concentration of ubiquitous elements as aluminium. The worst situation is when a separation step is necessary, because it requires extra-manipulations of the sample. This article describes the degree of contamination and its control for the aluminium trace analysis in dialysis solutions, when aluminium content of about 15 µg/l must be determinated.
Resumo:
Mercury kept in a garage of a residencial building in Rio de Janeiro was accidentally released and caused local (environmental and human) contamination. The concentration of mercury in indoor air of the most critical site reached 15.5 mg/m³. Outdoor air samples showed concentrations ranging from 0.37 to 6.6 mg/m³ . Seventy five per cent of the urine samples collected from 22 residents in the contaminated building showed levels of mercury higher than those observed in non exposed individuals (>6.9 mg/L); in 30% of these samples, the concentration was higher than 20 mg/L. These values show a high level of human contamination and the final consequences were not so serious owing to the quick action taken by one of the residents.
Resumo:
This paper describes the development and characterisation of Ni-Co coatings to be used as anodes in water electrolysis. Chemical oxidation of the surface was performed through thermal treatment at 400ºC for 10 h. The resulting surfaces were analysed by X-ray diffraction, EDX, SEM, cyclic voltammetry and constant current electrolysis. The electrochemical oxidation occurring on bare surfaces during electrolysis promotes the formation of thick oxide layers resulting in loss of activity. In oxidised surfaces the chemical Ni-Co oxide grown during the thermal treatment prevents further oxidation thus retaining their activity towards oxygen evolution. An optimum condition for the growth of mixed oxide with high activity was found for the bath containing 50 g L-1 CoSO4.
Resumo:
Several hundreds of artificial radionuclides are produced as the result of human activities, such as the applications of nuclear reactors and particle accelerators, testing of nuclear weapons and nuclear accidents. Many of these radionuclides are short-lived and decay quickly after their production, but some of them are longer-lived and are released into the environment. From the radiological point of view the most important radionuclides are cesium-137, strontium-90 and plutonium-239, due to their chemical and nuclear characteristics. The two first radioisotopes present long half life (30 and 28 years), high fission yields and chemical behaviour similar to potassium and calcium, respectively. No stable element exists for plutonium-239, that presents high radiotoxicity, long half-life (24000 years) and some marine organisms accumulate plutonium at high levels. The radionuclides introduced into marine environment undergo various physical, chemical and biological processes taking place in the sea. These processes may be due to physical dispersion or complicated chemical and biological interactions of the radionuclides with inorganic and organic suspend matter, variety of living organisms, bottom sediments, etc. The behaviour of radionuclides in the sea depends primarily on their chemical properties, but it may also be influenced by properties of interacting matrices and other environmental factors. The major route of radiation exposure of man to artificial radionuclides occuring in the marine environment is through ingestion of radiologically contamined marine organisms. This paper summarizes the main sources of contamination in the marine environment and presents an overview covering the oceanic distribution of anthropogenic radionuclides in the FAO regions. A great number of measurements of artificial radionuclides have been carried out on various marine environmental samples in different oceans over the world, being cesium-137 the most widely measured radionuclide. Radionuclide concentrations vary from region to region, according to the specific sources of contamination. In some regions, such as the Irish Sea, the Baltic Sea and the Black Sea, the concentrations depend on the inputs due to discharges from reprocessing facilities and from Chernobyl accident. In Brazil, the artificial radioactivity is low and corresponds to typical deposition values due to fallout for the Southern Hemisphere.
Resumo:
Two models of a glass micro-extractor were constructed after modification of a model proposed in the literature. The two models were used for the simultaneous extraction and enrichment of organochlorinated pesticides from aqueous matrixes to an organic solution appropriate for the gas chromatographic analysis of the pesticide. It was established that the performance of one of the modified micro-extractors permits the pre-concentration of the pesticides to a level that allow their quantitation at the trace level with electron capture detection. It is thus concluded that the glass micro-extractor is a suitable tool for the sample preparation step in the gas chromatographic analysis of environmental pollutants of the class of pesticides.
Resumo:
A simple and inexpensive device to automate a water distilling apparatus is shown. It is composed by a magnetic floater placed in the water reservoir and a level control unit, which acts over the heating element circuit. In order to provide water saving, an electromagnetic valve is inserted in the water supply inlet. Some suggestions for the adaptation to other types of equipment are also offered.
Resumo:
In order to evaluate the chromium contamination from tannery discharges into rivers in the State of Minas Gerais, samples of water and suspended material were collected and submitted to chemical analysis. The total content of chromium in the samples was measured by flame atomic absorption spectrophotometry. Water samples were analysed by standard addition method, while chromium concentration in suspended materials was determined by calibration curves. Localities investigated were Ipatinga, Matias Barbosa, Dores de Campo, Ressaquinha, Ubá and Juiz de Fora. Samples from a not-industrialized area were also analysed to obtain regional background values. Metal inputs were related to effluent discharges into the rivers. Suspended material transported Cr downriver. Chromium concentration in river water exceeded 656 times the value of the Brazilian Environmental Standards, while its concentration in suspended material ranged from 15 to 11066 µg g-1.
Resumo:
Solid-phase microextraction (SPME) has been applied to direct extraction of 11 organophosphorus pesticides in water using a 100 mm fiber polydimethylsiloxane. The method was evaluated with respect time of exposure, detection limits (LODs), linearity and precision. The detection limits (S/N = 3) depend of each pesticide and varie about ng/L levels. The linearity was satisfactory with coefficients of correlation usually greater than 0.993. The precision of the method was determined by extraction from 4.0 mg/L aqueous standard with coefficients of variation between 5.7 to 17.2%.
Resumo:
Selenium is both essential and toxic to man and animals, depending on the concentration and the ingested form. Most fruits and vegetables are poor sources of selenium, but coconut can be a good selenium source. Samples were suspended (1 + 4 v/v) in a mixture of tertiary amines soluble in water (10% v/v CFA-C). This simple sample treatment avoided contamination and decreased the analysis time. The standard additions method was adopted for quantification. The action of the autosampler was improved by the presence of the amines mixture in the suspension. A Varian model AA-800 atomic absorption spectrometer equipped with a graphite furnace and a GTA 100 autosampler was used for selenium determination in coconut water and coconut milk. Background correction was performed by means of the Zeeman effect. Pyrolytically coated graphite tubes were employed. Using Pd as chemical modifier, the pyrolysis and the atomization temperatures were set at 1400 and 2200ºC, respectively. For six samples, the selenium concentration in coconut water varied from 6.5 to 21.0 mug L-1 and in coconut milk from 24.2 to 25.1 mug L-1. The accuracy of the proposed method was evaluated by an addition-recovery experiment and all recovered values are in the 99.5-102.3% range. The main advantage of the proposed method is that it can be directly applied without sample decomposition.
Resumo:
Water Quality Index (WQI) was used during summer and winter of 1994 and 1995 in the final section of Onça and Feijão streams, downstream Broa Reservoir (São Carlos/SP) to evaluate agricultural and catlleman effects. In Onça stream water quality was "acceptable" in winter and "inappropriate to conventional treatment" in the summer. In Feijão stream the water had an "excellent" quality in winter and "good" in the summer. A MANOVA (Multivariate Analysis of Variance) has used to discriminate seasons and streams. Correlation (p<0,05) among the variables was tested. Water temperature, turbidity, pH and fecal bacteria are highly correlated and can be one of the factors that cause WQI change by seasons.
Resumo:
Polycyclic aromatic hydrocabons (PAHs) and their nitroderivatives (NPAHs) are ubiquitous in the environment and they are produced in several industrial and combustion processes. Some of these compounds are potent carcinogens/mutagens and their determination in biological samples is an important step for exposure control. A review of the analytical methodologies used for the determination of PAHs and their metabolites in biological samples is presented.