346 resultados para Lucas
Resumo:
Water-in-crude oil emulsions are formed during petroleum production and asphaltenes play an important role in their stabilization. Demulsifiers are added to destabilize such emulsions,however the demulsification mechanism is not completely known. In this paper, the performances of commercial poly(ethylene oxide-b-propylene oxide) demulsifiers were studied using synthetic water-in-oil emulsions and model-systems (asphaltenes in organic solvent). No change in the asphaltene aggregate size induced by the demulsifier was observed. The demulsification performance decreased as the asphaltene aggregate size increased, so it can be suggested that the demulsification mechanism is correlated to the voids between the aggregates adsorbed on the water droplets surface.
Resumo:
Ethanol is the most suitable substitute for oil-based fuels. The performance of the fermentation is affected by several factors, therefore the aim of this work was to evaluate the efficiency of the fermentation of a hydrolyzed must of sweet potato using three strains of the Saccharomyces cerevisiae. It was also evaluated the effect of three forms of the processes conduction in the fermentation yield, efficiency and viability of yeast at the end process. Among the parameters evaluated, only the cell viability showed significant difference. The strain PE-2 would be the most suitable for the fermentation of the hydrolysed sweet potato.
Resumo:
This technical note describes the construction of a low-cost optical detector. This device is composed by a high-sensitive linear light sensor (model ILX554) and a microcontroller. The performance of the detector was demonstrated by the detection of emission and Raman spectra of the several atomic systems and the results reproduce those found in the literature.
Resumo:
A new practical experiment involving silver and gold nanoparticle syntheses was introduced in an inorganic chemistry laboratory course for undergraduate students at the Institute of Chemistry, UNICAMP. The nanoparticles were synthesized by the reduction of silver nitrate and tetrachloroauric acid with sodium borohydride and sodium citrate in an aqueous medium. Stabilities of the suspensions were tested using several different reactants including sodium chloride, polyvinylpyrrolidone, polyvinyl alcohol and cistamine. Changes in optical properties were observed by electronic spectra and also by transmission electronic microscopy, which also yielded data for estimating particle size.
Resumo:
The structure of the various asphaltenic subfractions found in crude oil was evaluated. For this purpose, C5 asphaltenes were extracted from an asphaltic residue using n-pentane as the flocculant solvent. The different subfractions were isolated from the C5 asphaltenes by the difference in solubility in different solvents. These were characterized by infrared spectroscopy, nuclear magnetic resonance, X-ray fluorescence, elementary analysis and mass spectrometry. The results confirmed that the subfractions extracted with higher alkanes had greater aromaticity and molar mass. However, small solubility variations between the subfractions were attributed mainly to the variation in the concentrations of cyclical hydrocarbon compounds and metals.
Resumo:
Chemical imprinting technology has been widely used as a valuable tool in selective recognition of a given target analyte (molecule or metal ion), yielding a notable advance in the development of new analytical protocols. Since their discovery, molecularly imprinted polymers (MIPs) have been extensively studied with excellent reviews published. However, studies involving ion imprinted polymers (IIPs), in which metal ions are recognized in the presence of closely related inorganic ions, remain scarce. Thus, this review involved a survey of different synthetic approaches for preparing ion imprinted adsorbents and their application for the development of solid phase extraction methods, metal ion sensors (electrodes and optodes) and selective membranes.
Resumo:
In this paper, we show the construction of a low-cost, high-quality ball mill for obtaining finely divided powders, with the goal of presenting guidelines for achieving the best results for the milling process. This equipment allows for the adjustment of the size of the mill in order to process different quantities of material. The construction of mechanical and electrical components that provide increased efficiency, the choice of milling medium, and frequent problems experienced with homemade ball mills are discussed.
Resumo:
The chemical study of the orchid Maxillaria picta resulted in the isolation of the bioactive stilbenes phoyunbene B and phoyunbene C, in addition to four phenolic acids, one xanthone, steroidal compounds and two triterpenes. Crude extract, fractions, subfractions and the isolated xanthone were evaluated for anticancer activity against human tumor cell lines and against evolutionary forms of T. cruzi and L. amazonensis. The structures of the compounds were determined by GC-MS, and ¹H NMR, 13C NMR spectral methods as well as bidimensional techniques.
Resumo:
In this manuscript, a BiVO4 semiconductor was synthesized by solution combustion synthesis using different fuels (Alanine, Glycine and Urea). Also, the Tween® 80 surfactant was added during synthesis. BiVO4 was characterized by XRD, SEM and diffuse reflectance spectroscopy. Photocatalytic activity was evaluated by the discoloration of methylene blue at 664 nm under UV-visible light irradiation. According to XRD, the monoclinic phase of BiVO4 was obtained for the samples. The smallest particle size and highest k obs value were observed for the BiVO4/alanine sample, which promoted greater demethylation of methylene blue.
Resumo:
This review reports the preparation and characterization of bionanocomposites based on biodegradable polymers reinforced with cellulose nanocrystals (CNC) described in the literature. The outstanding potential of cellulose nanocrystals as reinforcement fillers of biodegradable polymers is presented with an emphasis on the solution casting process, which is an appropriate method to investigate the physico-chemical effects of the incorporation of CNC into the polymeric matrices. Besides solution casting, other small scale methods such as electrospinning and layer-by-layer are also covered.
Resumo:
Herein, we report the synthesis of β-N-glycosylsulfonamides derivatives of D-glucose and N-acetylglucosamine using conventional methods. We also describe a procedure that allows the preparation of these compounds in good yields without the anomerization of the intermediate glycosylamines. This method includes the intermediates obtained from the less reactive 1- and 2-naphthalenesulfonyl chlorides.
Resumo:
The obtention of silica and cyclodextrin hybrid materials was accomplished by refluxing them in xylol using citric acid as a binding agent. The materials were characterized by infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, scanning electron microscopy, and elemental analysis. Evidence for the docking of cyclodextrins α and γ was substantiated based on the variation in band intensity for groups such as ≡Si-OH. Additional docking evidence includes the displacement of some of the bands that are related to cyclodextrin such as the deformation of the C-H axial bond. The α and γ-CDSi materials were characterized as amorphous compounds. The products obtained in the synthesis showed changes in the decomposition temperatures of their isolated constituents, in which the mass of α and γ-CD docked to the silica surface gave the estimated values of 41% and 47%, respectively. The elemental constituents were shown to be consistent and close to their relative theoretical values. Thermogravimetric analysis showed that a reduction in the percentage of the hybrids was proportional to the amount of lost mass. This new material is an improvement over synthesized organosilane materials because the operator and the environment benefit from a less toxic methodology. In addition, the material has several potential applications in complexation systems with cyclodextrin.
Resumo:
We report herein a study on the glycosylation of cyclohexanol with four D-glucosamine-based peracetylated glycosyl chlorides bearing different substituents at C-2 and three glycosylation promoters, silver carbonate, silver triflate and mercury II chloride/mercury II oxide, by the Koenigs-Knorr method. Under the conditions studied, glycosylation was successful only when 3,4,6-tri-O -acetyl-2-deoxy-2-phthalimido-α-D-glucopyranosyl chloride was used as the glycosyl donor, with silver carbonate proving the best promoter. In order to investigate the influence of the nature of the halogen at C-1, we also carried out the glycosylation of cyclohexanol with 3,4,6-tri-O -acetyl-2-deoxy-2-phthalimido-α-D-glucopyranosyl bromide, a more reactive glycosyl donor. As expected, the yield with the bromide derivative was higher with the three promoters and, again, silver carbonate was the most efficient promoter. Finally, to illustrate the well-known efficient procedure for conversion of the phtalimido group at C-2 to the corresponding acetamido group, cyclohexyl 3,4,6-tri-O -acetyl-2-deoxy-2-phtalimido-β-D-glucopyranoside was converted into cyclohexyl 2-deoxy-2-acetamido-β-D-glucopyranoside in two steps, namely, hydrazinolysis of the phtalimido group followed by chemoselective acetylation of the free amino group by treatment with acetic anhydride in methanol, at 77% overall yield.
Resumo:
Asphaltenes are blamed for various problems in the petroleum industry, especially formation of solid deposits and stabilization of water-in-oil emulsions. Many studies have been conducted to characterize chemical structures of asphaltenes and assess their phase behavior in crude oil or in model-systems of asphaltenes extracted from oil or asphaltic residues from refineries. However, due to the diversity and complexity of these structures, there is still much to be investigated. In this study, asphaltene (sub)fractions were extracted from an asphaltic residue (AR02), characterized by NMR, elemental analysis, X-ray fluorescence and MS-TOF, and compared to asphaltene subfractions obtained from another asphaltic residue (AR01) described in a previous article. The (sub)fractions obtained from the two residues were used to prepare model-systems containing 1 wt% of asphaltenes in toluene and their phase behavior was evaluated by measuring asphaltene precipitation onset using optical microscopy. The results obtained indicated minor differences between the asphaltene fractions obtained from the asphaltic residues of distinct origins, with respect to aromaticity, elemental composition (CHN), presence and content of heteroelements and average molar mass. Regarding stability, minor differences in molecule polarity appear to promote major differences in the phase behavior of each of the asphaltene fractions isolated.