473 resultados para espectro de deslocamento, parâmetros de fonte
Resumo:
Catalyst based on Kegging-type heteropolyacids (H3PW12O40 - HPA), supported on SiO2 (H3PW), were prepared by the impregnation method under different thermal treatment conditions. The materials were characterized by different instrumental techniques and used as catalysts in the methyl esterification reactions of stearic acid. Using the catalyst with 15% of HPA, conversions higher than 60% were obtained after 2 h of reaction at 65 ºC. Recovery studies using hot-filtration with ethanol at 75 ºC showed satisfactory activity for two additional reaction cycles.
Resumo:
This article discusses the adsorption kinetics of a L-cysteine monolayer onto a gold surface by means of information obtained through the QCM technique. The results indicate that the adsorption process is rapid and follows the Langmuir isotherm, in which adsorption and desorption are considered. From these measurements the following parameter values were obtained: k d = (4.2 ± 0.4) x 10-3 s-1, k a = 75 ± 6 M-1 s-1, Keq=(1.8 ± 0.3) x 10(4) M-1 and ΔGads = - (5.8 ± 0.2) kcal mol-1.
Resumo:
In this work, the fatty acid quantity and composition of six freshwater microalgae and soybean grains was determined by direct transesterification and gas chromatography analysis. The results showed that all the freshwater microalgae species presented a higher quantity of fatty acid than soybean grain. Choricystis sp. (A) provides 115% more fatty acids per gram of biomass than soybean grain. With regard to the fatty acid composition, Choricystis sp. (A) showed an adequate proportion of saturated and unsaturated fatty acids, with lower quantity of polyunsaturated fatty acids and, akin to some marine microalgae, constitutes an alternative raw material for biodiesel production.
Resumo:
This work shows the results of a Proficiency Testing performed by a partnership between INMETRO and ANP. The performance of 49 Brazilian laboratories (using the z-score statistical test) in determining 10 quality parameters of ethanol fuel and biodiesel was evaluated. The certified reference values were provided by INMETRO, allowing a more rigorous assessment of the laboratories. For hydrous ethanol, the acidity parameter showed the lowest number of laboratories with satisfactory results (48%), while 85% of the laboratories presented satisfactory results for ethanol content. For biodiesel, the percentage of laboratories with satisfactory results ranged from 46% (kinematic viscosity) to 92% (acid number).
Resumo:
A didactic experiment is proposed aimed to extend the Flow Injection Analysis (FIA) based methodology to the area of physical chemistry/chemical reactors for undergraduate labs. Our prime objective was to describe the use of a gradient chamber for determination of the rate constant for the reaction between crystal violet and the hydroxide ion. The study was complemented by determining the effect of temperature on the rate constant. The kinetic parameters, activation energy and reaction rate constant are determined based on an assumption of rate orders. The main didactic advantages of the proposed experimental set-up are the use of less reagents, contributing to a more environmental friendly experiment. The experiment illustrates also the reduction of associated errors and time by using automated analysis owing to decreased operator manipulation.
Resumo:
In the present work, beta zeolites were prepared by an alternative route called steam-assisted conversion (SAC). Several zeolites were synthesized using amorphous dry gels with a low SDA concentration (0.09 mol, TEAOH). Temperature and crystallization time were the main parameters studied. X-ray diffraction (XRD), infrared spectroscopy (IR) and scanning electron microscopy (SEM) were the characterization techniques employed. The zeolites prepared showed mixed phases such as beta, MTW and ZSM-5 while only one sample treated at 150ºC with 24 h of crystallization time showed a pure ZSM-5 phase (SAC-5). These preliminary results serve as a starting point for optimizing the synthesis of a specific type of zeolite using the SAC method.
Resumo:
This paper describes the use of the open source hardware platform, denominated "Arduino", for controlling solenoid valves for solutions handling in flow analysis systems. System assessment was carried out by spectrophotometric determination of iron (II) in natural water. The sampling rate was estimated as 45 determinations per hour and the coefficient of variation was lower than 3%. Per determination, 208 µg of 1-10-phenanthroline and ascorbic acid were consumed, generating 1.3 mL of waste. "Arduino" proved a reliable microcontroller with low cost and simple interfacing, allowing USB communication for solenoid device switching in flow systems.
Resumo:
Fresh water sponge was used as a silica source for the synthesis of MCM-41 via the hydrothermal process. The silica was extracted from the sponge by washing with nitric acid and piranha solution. Synthesis of MCM-41 was performed at 100 °C for 5 days and the procedure was optimized, with modifications made to the leaching temperature of the silica and the synthesis of mesoporous material, which was characterized by XRD, FT-IR, SEM and adsorption of N2. The optimal result was achieved at a temperature of 135 °C for 3 days, showing ordered mesoporous material with a surface area of 1080 m² g-1.
Resumo:
Coal, oil, natural gas, and shale gas are biomass that is formed millions of years ago. These are non-renewable and depleting, even considering the recent discovery of new sources of oil in the presalt and new technologies for the exploitation of shale deposits. Currently, these raw materials are used as a source of energy production and are also important for the production of fine chemicals. Since these materials are finite and their (oil) price is increasing, it is clear that there will be a progressive increase in the chemical industry to use renewable raw materials as a source of energy, an inevitable necessity for humanity. The major challenge for the society in the twenty first century is to unite governments, universities, research centers, and corporations to jointly act in all areas of science with one goal of finding a solution to global problems, such as conversion of biomass into compounds for the fine chemical industry.Non-renewable raw materials are used in the preparation of fuels, chemical intermediates, and derivatives for the fine chemical industry. However, their stock in nature has a finite duration, and their price is high and will likely increase with their depletion. In this scenario, the alternative is to use renewable biomass as a replacement for petrochemicals in the production of fine chemicals. As the production of biomass-based carbohydrates is the most abundant in nature, it is judicious to develop technologies for the generation of chain products (fuels, chemical intermediates, and derivatives for the fine chemicals industry) using this raw material. This paper presents some aspects and opportunities in the area of carbohydrate chemistry toward the generation of compounds for the fine chemical industry.
Resumo:
Glycerol, a co-product of biodiesel production, was used as a carbon source for the kinetics studies and production of biosurfactants by P. aeruginosa MSIC02. The highest fermentative parameters (Y PX = 3.04 g g-1; Y PS = 0.189 g g-1, P B = 31.94 mg L-1 h-1 and P X = 10.5 mg L-1 h-1) were obtained at concentrations of 0.4% (w/v) NaNO3 and 2% (w/v) glycerol. The rhamnolipid exhibited 80% of emulsification on kerosene, surface tension of 32.5 mN m-1, CMC = 28.2 mg L-1, C20 (concentration of surfactant in the bulk phase that produces a reduction of 20 dyn/cm in the surface tension of the solvent) = 0.99 mg L-1, Γm (surface concentration excess) = 2.4 x 10-26 mol Å-2 and S (surface area) = 70.4 Ų molecule-1 with solutions containing 10% NaCl. A mathematical model based on logistic equation was considered to representing the process. Model parameters were estimated by non-linear regression method. This approach was able to give a good description of the process.
Resumo:
In this work, an experimental design was used to analyze the influence of process parameters on the production of extracellular enzymes such as β-glucosidase and peroxidase, and their possible effect on the obtention of soluble and nanostructured silica from rice husk ash by the action of the fungus Fusarium oxysporum. Specifically, pH, fermentation time and glucose concentration in the culture medium were varied. Statistical analysis indicated that the silica synthesis in the aqueous medium was strongly dependent on pH and time. Although the glucose concentration does not exert a direct influence on the biosynthesis of silica, it is an important parameter in the production of extracellular enzymes. To prevent enzyme inhibition and provide higher dissolution of silica, it is recommended to work at a pH close to neutral with a glucose concentration of 3 g L-1 for at least 144 h.
Resumo:
This work shows the influence of several reactional parameters for obtaining graphene through successive steps of oxidation and exfoliation of bulk graphite (resulting in graphene oxide), followed by chemical reduction. The results showed that changes in temperature, reaction time, reducing agent and source of primary graphite lead to different surface compositions and stability in dispersion of graphene oxide. Also, the use of different reducing agents promoted different degrees of restoration of C=C bonds in the bidimensional structure of graphene.
Resumo:
Various vegetables as biological catalysts were evaluated in enantioselective reduction of carbonyl compounds. The stereoselectivity of the process was in agreement with Prelog's rule for twelve of the vegetables, whereas okra and green peppers formed anti-Prelog products. Zingiber officinale exhibited the best results with 30% conversion and 89% ee. The parameters of the reaction such as time, solvent and other substrates investigated, as well as the specie, showed good chemo- and enantioselectivity.
Resumo:
The global energy scenario is currently a widely discussed topic, with growing concern about the future supplies. Thus, much attention has been dedicated to the utilization of biomass as an energy resource. In this respect, orange peel has become a material of great interest, especially to Brazil, which generates around 9.5 million tons of this waste per year. To this end, the authors studied the kinetics of the thermal processing of dried orange peel in inert and oxidizing atmosphere. The thermodynamic parameters were determined by the Ozawa-Flynn-Wall method for the global process observed during heating from the 25°C up to 800°C. The thermal analysis in air and nitrogen showed 3-2 stages of mass loss, respectively, with approximately 20% residual mass under a nitrogen atmosphere. The increase in the values of activation energy for the conversion points between 20% and 60% for thermal effects in air and nitrogen atmosphere was observed. The activation energy obtained in an oxidizing atmosphere was higher than that obtained under a nitrogen atmosphere. The fourier-transform infrared spectroscopy and X-ray diffraction analysis showed that the material has a high level of complexity with the presence of alkali and alkaline earth groups as well as phosphate, plus substances such as pectin, cellulose and lignin.
Resumo:
An enzymatic spectrophotometric method for the determination of methyldopa in a dissolution test of tablets was developed using peroxidase from radish (Raphanus sativus). The enzyme was extracted from radish roots using a phosphate buffer of pH 6.5 and partially purified through centrifugation. The supernatant was used as a source of peroxidase. The methyldopachrome resulting from the oxidation of methyldopa catalyzed by peroxidase was monitored at 480 nm. The enzymatic activity was stable for a period of at least 25 days when the extract was stored at 4 or -20 ºC. The method was validated according to RDC 899 and ICH guidelines. The calibration graph was linear in the range 200-800 µg mL-1, with a correlation coefficient of 0.9992. The limits of detection and quantification in the dissolution medium were 36 and 120 µg mL-1, respectively. Recovery was greater than 98.9%. This method can be applied for the determination of methyldopa in dissolution tests of tablets without interference from the excipients.