101 resultados para hydrogen peroxide solution
Resumo:
The long-lived flowers of orchids increase the chances of pollination and thus the reproductive success of the species. However, a question arises: does the efficiency of pollination, expressed by fruit set, vary with the flower age? The objective of this study was to verify whether the flower age of Corymborkis flava(Sw.) Kuntze affects pollination efficiency. The following hypotheses were tested: 1) the fruit set of older flowers is lower than that of younger ones; 2) morphological observations (perianth and stigmatic area), stigma receptivity test by using a solution of hydrogen peroxide and hand-pollination tests are equally effective in defining the period of stigmatic receptivity. Flowers were found to be receptive from the first to the fourth day of anthesis. Fruit set of older flowers (third and fourth day) was lower than that of younger flowers. Morphological observations, the stigma receptivity test and hand-pollinations were equally effective in defining the period of stigmatic receptivity. However, to evaluate the maximum degree of stigma receptivity of orchid species with long-lived flowers, we recommend hand-pollinations, beyond the period of receptivity.
Resumo:
ABSTRACT A detailed protocol for chemical clearing of bee specimens is presented. Dry specimens as well as those preserved in liquid media can be cleared using this protocol. The procedure consists of a combined use of alkaline solution (KOH or NaOH) and hydrogen peroxide (H2O2), followed by the boiling of the cleared specimens in 60–70% EtOH. Clearing is particularly useful for internal skeletal morphological research. This procedure allows for efficient study of internal projections of the exoskeleton (e.g., apodemes, furcae, phragmata, tentoria, internal ridges and sulci), but this process makes external features of the integument, as some sutures and sulci, readily available for observation as well. Upon completion of the chemical clearing process the specimens can be stored in glycerin. This procedure was developed and evaluated for the preparation of bees and other Apoidea, but modifications for use with other insect taxa should be straightforward after some experimentation on variations of timing of steps, concentration of solutions, temperatures, and the necessity of a given step. Comments on the long-term storage, morphological examination, and photodocumentation of cleared specimens are also provided.
Resumo:
This work reviews recent studies of underpotential deposition (UPD) of several metals on Pt and Au substrates performed in the Grupo de Materiais Eletroquímicos e Métodos Eletroanalíticos (IQSC -- USP, São Carlos). The UPD Cu, Cd and Pb on Pt were analysed in terms of their influence in the oxygen evolution reaction. Partial blockage of surface active sites, promoted by Pb ad-atoms, resulted in a change from water to hydrogen peroxide as the final product. The Ag UPD on Pt and Au substrates was also discussed in this work. A detailed model of charge calculation for Ag monolayer was developed and confirmed by the rotating ring-disk data. The partial charge transfer in UPD studies was analysed in the Cd/Pt and Cd/Au systems and a value of 0.5 was found for the adsorption electrovalence of Cd ad-ions. The Sn/Pt UPD systems were studied from the point of view of the valences of metallic ions in solution. The deposition from Sn(IV) generates a full monolayer with a maximum occupation of approximately 40% of the surface active sites (340 µC cm-2) plus 105 µC cm-2 of Hads (half monolayer). Changing the metallic ion for Sn(II), it was possible to deposit a full monolayer (210 µC cm-2) without any detectable Hads. Finally, the effect of anions was discussed in the Zn/Pt and Zn/Au systems. Here, the hydrogen evolution reaction (her) and the hydrogen adsorption/desorption were used in order to investigate the maximum coverage of the surface with Zn ad-atoms. The full monolayer, characterised by the complete absence of Hads, was achieved only in 0.5 M HF solutions.
Resumo:
A flow injection spectrophotometric system was projected for monitoring hydrogen peroxide during photodegradation of organic contaminants in photo-Fenton processes (Fe2+/H2O2/UV). Sample is injected manually in a carrier stream and then receives by confluence a 0.1 mol L-1 NH4VO3 solution in 0.5 mol L-1 H2SO4 medium. The product formed shows absorption at 446 nm which is recorded as a peak with height proportional to H2O2 concentration. The performance of the proposed system was evaluated by monitoring the consumption of H2O2 during the photodegradation of dichloroacetic acid solution by foto-Fenton reaction.
Resumo:
This paper presents some results that may be used as previous considerations to a hydrogen peroxide electrogeneration process design. A kinetic study of oxygen dissolution in aqueous solution is carried out and rate constants for oxygen dissolution are calculated. Voltammetric experiments on vitreous carbon cathode shown that the low saturation concentration drives the oxygen reduction process to a mass transfer controlled process which exhibits low values of limiting currents. Results have shown that the hydrogen peroxide formation and its decomposition to water are separated by 400 mV on the vitreous carbon surface. Diffusion coefficients for oxygen and hydrogen peroxide are calculated using data taken from Levich and Tafel plots. In a series of bulk electrolysis experiments hydrogen peroxide was electrogenerated at several potential values, and concentration profiles as a function of the electrical charged passed were obtained. Data shown that, since limiting current plateaus are poorly defined onto reticulated vitreous carbon, cathodic efficiency may be a good criterion for choosing the potential value in which hydrogen peroxide electrogeneration should be carried out.
Resumo:
Crude extracts of several vegetables such as peach (Prunus persica), yam (Alocasia macrorhiza), manioc (Manihot utilissima), artichoke (Cynara scolymus L), sweet potato (Ipomoea batatas (L.) Lam.), turnip (Brassica campestre ssp. rapifera), horseradish (Armoracia rusticana) and zucchini (Cucurbita pepo) were investigated as the source of peroxidase (POD: EC 1.11.1.7). Among those, zucchini (Cucurbita pepo) crude extract was found to be the best one. This enzyme in the presence of hydrogen peroxide catalyses the oxidation of paracetamol to N-acetyl-p-benzoquinoneimine which the electrochemical reduction back to paracetamol was obtained at a peak potential of ¾0.10V. A cyclic voltammetric study was performed by scanning the potential from + 0.5 to ¾ 0.5 V. The recovery of paracetamol from two samples ranged from 97.3 to 106% and a rectilinear calibration curve for paracetamol concentration from 1.2x10-4 to 2.5x10-3 mol L-1 (r=0.9965) were obtained. The detection limit was 6.9x10-5 mol L-1 and the relative standard deviation was less than 1.1% for a solution containing 2.5x10-3 mol L-1 paracetamol and 2.0x10-3 mol L-1 hydrogen peroxide (n=12). The results obtained for paracetamol in pharmaceutical products using the proposed biosensor and Pharmacopoeial procedures are in agreement at the 95% confidence level.
Resumo:
Biosensors were developed by immobilization of gilo (Solanum gilo) enzymatic extract on chitosan biopolymers using three different procedures: glutaraldehyde, carbodiimide/glutaraldehyde and epichlorohydrin/glutaraldehyde. The best biosensor performance was obtained after the immobilization of peroxidase on chitosan with epichlorohydrin/glutaraldehyde. Linear analytical curves for hydroquinone concentrations from 2.5x10-4 to 4.5x10-3 mol L-1 with a detection limit of 2.0x10-6 mol L-1 and recovery of hydroquinone ranging from 95.1 to 105% were obtained. The relative standard deviation was < 1.0 % for a solution of 3.0x10-4 mol L-1 hydroquinone and 2.0x10-3 mol L-1 hydrogen peroxide in 0.1 mol L-1 phosphate buffer solution at pH 7.0 (n=8). The lifetime of this biosensor was 6 months (at least 300 determinations).
Resumo:
This work presents two recycling processes for spent Li/MnO2 batteries. After removal of the solvent under vacuum the cathode + anode + electrolyte was submitted to one of the following procedures: (a) it was calcined (500 ºC, 5 h) and the calcined solid was submitted to solvent extraction with water in order to recover lithium salts. The residual solid was treated with sulfuric acid containing hydrogen peroxide. Manganese was recovered as sulfate; (b) the solid was treated with potassium hydrogeno sulfate (500 ºC, 5 h). The solid was dissolved in water and the resulting solution was added dropwise to sodium hydroxide. Manganese was recovered as dioxide. The residual solution was treated with potassium fluoride in order to precipitate lithium fluoride.
Resumo:
In this work synthetic niobia was used to promote the oxidation of methylene blue dye in aqueous medium. The niobia was characterized by N2 adsorption/desorption, XRD and TG measurements. The presence of reactive species on the niobia surface strongly increased the oxidation rate of the methylene blue dye. The reaction mechanism was studied by ESI-MS suggesting that the oxidation of the organic dye involve oxidizing species generated mainly after previous treatment with H2O2. It can be observed that the catalyst is a good material in the activation of gas (atmospheric oxygen) or liquid (hydrogen peroxide) oxidant agent with a total discoloration of the dye solution after only 1 h of reaction.
Resumo:
Chicken meat is largely consumed in human nutrition and it is produced in extremely large scale in some countries, including Brazil. In this work graphite furnace atomic absorption spectrometry was used for determination of arsenic in chicken and chicken production-related samples. These samples were digested employing a microwave-assisted procedure in closed vessels using a 7 mol L-1 nitric acid solution plus concentrated hydrogen peroxide. The concentration range of total As determined in chicken production-related samples varied from 1.30 to 29.8 mg kg-1 of As. The detection and quantification limits reached were 0.055 and 0.182 mg kg-1, respectively (n = 15).
Resumo:
This work proposes a separation, recovery and reuse procedure of chemical residues with chromium. This residue was generated by the determination of oxidizable carbon in organic fertilizers samples. The Cr(VI) of the residue was reduced with ethanol and precipitated with NaOH. The Cr(OH)3 precipitate was separated and oxidized to dichromate ions with hydrogen peroxide. This solution was used another time in organic carbon determination. The uses of recycled dichromate solution were appropriated in four successive recycling. The accuracy was proven using potassium hydrogen phthalate and ten organic fertilizer samples. The organic carbon results, determined with recycled solutions, were similar the conventional solution.
Resumo:
In this work, we describe the immobilization of the dinuclear compound [Cu2(apyhist)2Cl2](ClO4)2 (1) and its derived cations complexes, obtained in water solution or by deprotonation of the imidazolate moiety in the ligand leading to a cyclic tetranuclear species, in the Nafion® membrane on glass carbon electrode surface. After that, we studied the influence of the equilibrium in the electrocatalytic activity towards the reduction of H2O2 in the development of an amperometric sensor for the analytical determination of hydrogen peroxide. This strategy proved successful, and the electrochemical behaviour of the all complexes formed within the Nafion® coatings was characterized. We also provide evidence that its related cyclic tetranuclear imidazolate-bridged complex acts as a catalysts for the intramolecular, two-electron reduction of H2O2.
Resumo:
Adsorption of Reactive Blue 19 dye onto activated red mud was investigated. Red mud was treated with hydrogen peroxide (LVQ) and heated at both 400 ºC (LVQ400) and 500 ºC (LVQ500). These samples were characterized by pH, specific surface area, point of zero charge and mineralogical composition. Adsorption was found to be significantly dependent on solution pH, with acidic conditions proving to be the most favorable. The adsorption followed pseudo-second-order kinetics. The Langmuir isotherm was the most appropriate to describe the phenomenon of dye removal using LVQ, LVQ400 and LVQ500, with maximum adsorption capacity of 384.62, 357.14 and 454.54 mg g-1, respectively.
Resumo:
This work describes the sol-gel mixed oxide SiO2/TiO2 property, ST, as prepared, and submitted to heat treatment a 773 K, STC. SEM and EDS images show, within magnification used, a uniform distribution of the TiO2 particles in SiO2/TiO2 matrix. Both, ST and STC adsorb hydrogen peroxide on the surface and through EPR and UV-Vis diffuse reflectance spectra, it was possible to conclude that the species on the surface is the peroxide molecule attached to the Lewis acid site of titanium particle surface, alphaTi(H2O2)+. As the material is very porous, presumably the hydrogen peroxide molecule is confined in the matrix pores on the surface, a reason why the adsorbed species presents an exceptional long lived stability.
Resumo:
Stability of minimally processed radicchio (Cichorium intybus L.) was evaluated under modified atmosphere (2% O2, 5% CO2, and 93% N2) on 3, 5, 7 and 10 days of storage at 5°C. The samples were hygienized in sodium hypochlorite or hydrogen peroxide solutions to identify the most effective sanitizing solution to remove microorganisms. Microbiological analysis was conducted to identify the presence of coliforms at 35°C and 45°C, mesophilic microorganisms, and yeast and mold. Physicochemical analyses of mass loss, pH, soluble solids, and total acidity were conducted. The color measurements were performed using a Portable Colorimeter model CR-400. The antioxidant activity was determined by 2,2-diphenyl-1-picrylhydrazyl and 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic methods. The sensory evaluation was carried out using a hedonic scale to test overall acceptance of the samples during storage. The sodium hypochlorite (150 mg.L-1) solution provided greater safety to the final product. The values of pH ranged from 6.17 to 6.25, total acidity from 0.405 to 0.435%, soluble solids from 0.5 to 0.6 °Brix, mass loss from 1.7 to 7.2%, and chlorophyll from 1.068 to 0.854 mg/100g. The antioxidant activity of radicchio did not show significant changes during the first 3 days of storage. The overall acceptance of the sample stored in the sealed package without modified atmosphere was 70%, while the fresh sample was obtained 77% of approval. Although the samples packaged under modified atmosphere had a higher acceptance score, the samples in sealed packages had satisfactory results during the nine days of storage. The use of modified atmosphere, combined with cooling and good manufacturing practices, was sufficient to prolong the life of minimally processed radicchio, Folha Larga cultivar, for up to ten days of storage.