41 resultados para activation C-H
Resumo:
This review aims at to the presentation and discussion of the principal aspects of the C-H activation by transition metals. Representative examples were selected from the recent literature to illustrate these principles beginning with somewhat simple examples and moving up to more complex ones. The synthetic potential of the C-H activation, as well as the potential advantages and disadvantages of the methodology are highlighted with relevant recent examples, along with brief insights on the mechanism aspects of these reactions.
Resumo:
This study was conducted to investigate the activation ability of the platelet-rich plasma (PRP) by pharmacological agents, as well as to verify the need or not of this activation for therapeutic use. The PRP was obtained from four healthy crossbred geldings aged 13 to 16 years (15±1years), and was processed for observation and quantification of the platelet morphology by using the transmission electron microscopy. All PRP samples were activated with 10% calcium chloride (CaCl2) solution, pure bovine thrombin or associated with CaCl2. The control (pure PRP) was not pharmacologically activated. In the pure PRP samples, 49% of the platelets were classified as state of activation uncertain, 41% as resting, 9% as fully activated and 1% as irreversibly damaged. Treatment with 10% CaCl2 provided a distribution of 54% platelets in state of activation uncertain, 24% as fully activated, 20% as resting, and 2% as irreversibly damaged. The platelet morphology of the bovine thrombin treated samples did not fit into classification adopted, as showing irregular shape with emission of large filamentous pseudopods, appearance of ruptured and whole granules in the remaining cytoplasm and extracellular environment. There was effect of the treatment on the platelet morphology (P=0.03). The 10% CaCl2 is an adequate platelet-activating agent. However, in cases the use of PRP under its liquid form is necessary, the use of pure PRP is recommended, since besides presenting an adequate percentage of fully activated platelets it also has significant amount of the resting type, which can be activated by substances found in the injured tissue.
Resumo:
TGF-ß1 regulates both cellular growth and phenotypic plasticity important for maintaining a growth advantage and increased invasiveness in progressively malignant cells. Recent studies indicate that TGF-ß-1 stimulates the conversion of epitheliod to fibroblastoid phenotype which presumably leads to the inactivation of growth-inhibitory effects by TGF-ß1 (Portella et al. (1998) Cell Growth and Differentiation, 9: 393-404). Therefore, the investigation of TGF-ß1 signaling that leads to altered growth and migration may provide novel targets for the prevention of increased cell growth and invasion. Although much attention has been paid to TGF-ß1 responses in epithelial cells, the above studies suggest that examination of signal transduction pathways in fibroblasts are important as well. Data from our laboratory are consistent with the concept that TGF-ß1 can act as a regulatory switch in density-dependent C3H 10T1/2 fibroblasts capable of either promoting or delaying G1 traverse. The regulation of this switch is proposed to occur prior to pRb phosphorylation, namely prior to activation of cyclin-dependent kinases. The current study is concerned with the evaluation of a key cyclin (cyclin D1) which activates cdk4 and p27KIP1 which in turn inhibit cdk2 in the proliferative responses of epidermal growth factor (EGF) and platelet-derived growth factor (PDGF) and their modulation by TGF-ß1. Although the molecular events that lead to elevation of cyclin D1 are not completely understood, it appears likely that activation of p42/p44MAPK kinases is involved in its transcriptional regulation. TGF-ß1 delayed EGF- or PDGF-induced cyclin D1 expression and blocked the induction of active p42/p44MAPK. The mechanism by which TGF-ß1 induces a block in p42/p44MAPK activation is being examined and the possibility that TGF-ß1 regulates phosphatase activity is being tested.
Resumo:
Injection of an Ascaris suum extract (Asc) affects both the humoral and cellular immune responses to unrelated antigens when it is co-administered with these antigens. In the present study we evaluated the effect of Asc on macrophage activation in the early phase of Mycobacterium bovis BCG (Pasteur strain TMCC 1173) infection in C57Bl/6 mice. C57Bl/6 mice were injected intraperitoneally (ip) with 0.1 mg BCG (BCG group) or BCG plus 1 mg Asc (BCG + Asc group). The peritoneal exudates were obtained at 2, 7 and 14 days after infection. The numbers of IFN-g-secreting cells were assessed by the ELISPOT assay. Nitric oxide (NO) production was measured by the Griess method and by the evaluation of NADPH diaphorase activity in the peritoneal exudates. The administration of Asc extract increased NADPH diaphorase activity (2 days: control = 0, BCG = 7%, BCG + Asc = 13%, and Asc = 4%; 7 days: control = 4, BCG = 13%, BCG + Asc = 21%, and Asc = 4.5%) and TNF-a levels (mean ± SD; 2 days: control = 0, BCG = 169 ± 13, BCG + Asc = 202 ± 37, and Asc = 0; 7 days: control = 0, BCG = 545 ± 15.5, BCG + Asc = 2206 ± 160.6, and Asc = 126 ± 26; 14 days: control = 10 ± 1.45, BCG = 9 ± 1.15, BCG + Asc = 126 ± 18, and Asc = 880 ± 47.67 pg/ml) in the early phase of BCG infection. Low levels of NO production were detected at 2 and 7 days after BCG infection, increasing at 14 days (mean ± SD; 2 days: control = 0, BCG = 3.7 ± 1.59, BCG + Asc = 0.82 ± 0.005, Asc = 0.48 ± 0.33; 7 days: control = 0, BCG = 2.78 ± 1.54, BCG + Asc = 3.07 ± 1.05, Asc = 0; 14 days: control = 0, BCG = 9.05 ± 0.53, BCG + Asc = 9.61 ± 0.81, Asc = 10.5 ± 0.2 (2 x 106) cells/ml). Furthermore, we also observed that Asc co-injection induced a decrease of BCG-colony-forming units (CFU) in the spleens of BCG-infected mice during the first week of infection (mean ± SD; 2 days: BCG = 1.13 ± 0.07 and BCG + Asc = 0.798 ± 0.305; 7 days: BCG = 1.375 ± 0.194 and BCG + Asc = 0.548 ± 0.0226; 14 days: BCG = 0.473 ± 0.184 and BCG + Asc = 0.675 ± 0.065 (x 102) CFU). The present data suggest that Asc induces the enhancement of the immune response in the early phase of BCG infection.
Resumo:
The neurotransmission of the chemoreflex in the nucleus tractus solitarii (NTS), particularly of the sympatho-excitatory component, is not completely understood. There is evidence that substance P may play a role in the neurotransmission of the chemoreflex in the NTS. Microinjection of substance P (50 pmol/50 nl, N = 12, and 5 nmol/50 nl, N = 8) into the commissural NTS of unanesthetized rats produced a significant increase in mean arterial pressure (101 ± 1 vs 108 ± 2 and 107 ± 3 vs 115 ± 4 mmHg, respectively) and no significant changes in heart rate (328 ± 11 vs 347 ± 15 and 332 ± 7 vs 349 ± 13 bpm, respectively) 2 min after microinjection. Previous treatment with WIN, an NK-1 receptor antagonist (2.5 nmol/50 nl), microinjected into the NTS of a specific group of rats, blocked the pressor (11 ± 5 vs 1 ± 2 mmHg) and tachycardic (31 ± 6 vs 4 ± 3 bpm) responses to substance P (50 pmol/50 nl, N = 5) observed 10 min after microinjection. Bilateral microinjection of WIN into the lateral commissural NTS (N = 8) had no significant effect on the pressor (50 ± 4 vs 42 ± 6 mmHg) or bradycardic (-230 ± 16 vs -220 ± 36 bpm) responses to chemoreflex activation with potassium cyanide (iv). These data indicate that the activation of NK-1 receptors by substance P in the NTS produces an increase in baseline mean arterial pressure and heart rate. However, the data obtained with WIN suggest that substance P and NK-1 receptors do not play a major role in the neurotransmission of the chemoreflex in the lateral commissural NTS.
Resumo:
Apoptosis and necrosis are two distinct forms of cell death that can occur in response to different agents and stress conditions. In order to verify if the oxidative stress induced by dietary selenium and vitamin E deficiencies can lead muscle cells to apoptosis, one-day-old chicks were reared using diets differing in their vitamin E (0 or 10 IU/kg) and selenium (0 or 0.15 ppm) supplementation. Chick skeletal muscle tissue was obtained from 28-day-old animals and used to verify apoptosis occurrence based on caspase activity detection and DNA fragmentation. Antioxidant deficiency significantly increased caspase-like activity assessed by the hydrolysis of fluorogenic peptide substrates (Abz-peptidyl-EDDnp) at lambdaexc = 320 nm and lambdaem = 420 nm. Proteolytic activation was not accompanied by typical internucleosomal DNA fragmentation detected by field inversion gel electrophoresis. Although the general caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp(O-Me) fluoromethyl ketone (Z-VAD-fmk) (0 to 80 muM) did not block caspase-like activity when preincubated for 30 min with muscle homogenates, the hydrolyzed substrates presented the same cleavage profile in HPLC (at the aspartic acid residue) when incubated with the purified recombinant enzyme caspase-3. These data indicate that oxidative stress causes caspase-like activation in muscle cells and suggest that cell death associated with exudative diathesis (dietary deficiency of selenium and vitamin E) can follow the apoptotic pathway.
Resumo:
Streptokinase, a 47-kDa protein isolated and secreted by most group A, C and G ß-hemolytic streptococci, interacts with and activates human protein plasminogen to form an active complex capable of converting other plasminogen molecules to plasmin. Our objective was to compare five streptokinase formulations commercially available in Brazil in terms of their activity in the in vitro tests of euglobulin clot formation and of the hydrolysis of the plasmin-specific substrate S-2251™. Euglobulin lysis time was determined using a 96-well microtiter plate. Initially, human thrombin (10 IU/ml) and streptokinase were placed in individual wells, clot formation was initiated by the addition of plasma euglobulin, and turbidity was measured at 340 nm every 30 s. In the second assay, plasminogen activation was measured using the plasmin-specific substrate S-2251™. Streptase™ was used as the reference formulation because it presented the strongest fibrinolytic activity in the euglobulin lysis test. The Unitinase™ and Solustrep™ formulations were the weakest, showing about 50% activity compared to the reference formulation. All streptokinases tested activated plasminogen but significant differences were observed. In terms of total S-2251™ activity per vial, Streptase™ (75.7 ± 5.0 units) and Streptonase™ (94.7 ± 4.6 units) had the highest activity, while Unitinase™ (31.0 ± 2.4 units) and Strek™ (32.9 ± 3.3 units) had the weakest activity. Solustrep™ (53.3 ± 2.7 units) presented intermediate activity. The variations among the different formulations for both euglobulin lysis test and chromogenic substrate hydrolysis correlated with the SDS-PAGE densitometric results for the amount of 47-kDa protein. These data show that the commercially available clinical streptokinase formulations vary significantly in their in vitro activity. Whether these differences have clinical implications needs to be investigated.
Resumo:
An increasing number of pathophysiological roles for purinoceptors are emerging, some of which have therapeutic potential. Erythrocytes are an important source of purines, which can be released under physiological and physiopathological conditions, acting on purinergic receptors associated with the same cell or with neighboring cells. Few studies have been conducted on lizards, and have been limited to ATP agonist itself. We have previously shown that the red blood cells (RBCs) of the lizard Ameiva ameiva store Ca2+ in the endoplasmic reticulum (ER) and that the purinergic agonist ATP triggers a rapid and transient increase of [Ca2+]c by mobilization of the cation from internal stores. We also reported the ability of the second messenger IP3 to discharge the ER calcium pool of the ER. Here we characterize the purinoceptor present in the cytoplasmic membrane of the RBCs of the lizard Ameiva ameiva by the selective use of ATP analogues and pyrimidine nucleotides. The nucleotides UTP, UDP, GTP, and ATPgammaS triggered a dose-dependent response, while interestingly 2MeSATP, 2ClATP, alpha, ß-ATP, and ADP failed to do so in a 1- to 200-µm con- centration. The EC50 obtained for the compounds tested was 41.77 µM for UTP, 48.11 µM for GTP, 53.11 µM for UDP, and 30.78 µM for ATPgammaS. The present data indicate that the receptor within the RBCs of Ameiva ameiva is a P2Y4-like receptor due to its pharmacological similarity to the mammalian P2Y4 receptor.
Resumo:
Glycolipoprotein (GLP) from pathogenic serovars of Leptospira has been implicated in the pathogenesis of leptospirosis by its presence in tissues of experimental animals with leptospirosis, the inhibition of the Na,K-ATPase pump activity, and induced production of cytokines. The aims of the present study were to investigate the induction of IL-6 by GLP in peripheral blood mononuclear cells (PBMC) and to demonstrate monocyte stimulation at the cellular level in whole blood from healthy volunteers. PBMC were stimulated with increasing concentrations (5 to 2500 ng/ml) of GLP extracted from the pathogenic L. interrogans serovar Copenhageni, lipopolysaccharide (positive control) or medium (negative control), and supernatants were collected after 6, 20/24, and 48 h, and kept at -80ºC until use. Whole blood was diluted 1:1 in RPMI medium and cultivated for 6 h, with medium, GLP and lipopolysaccharide as described above. Monensin was added after the first hour of culture. Supernatant cytokine levels from PBMC were measured by ELISA and intracellular IL-6 was detected in monocytes in whole blood cultures by flow-cytometry. Monocytes were identified in whole blood on the basis of forward versus side scatter parameters and positive reactions with CD45 and CD14 antibodies. GLP ( > or = 50 ng/ml)-induced IL-6 levels in supernatants were detected after 6-h incubation, reaching a peak after 20/24 h. The percentage of monocytes staining for IL-6 increased with increasing GLP concentration. Thus, our findings show a GLP-induced cellular activation by demonstrating the ability of GLP to induce IL-6 and the occurrence of monocyte activation in whole blood at the cellular level.
Resumo:
We investigated the effects of bilateral injections of the GABA receptor agonists muscimol (GABA A) and baclofen (GABA B) into the nucleus tractus solitarius (NTS) on the bradycardia and hypotension induced by iv serotonin injections (5-HT, 2 µg/rat) in awake male Holtzman rats. 5-HT was injected in rats with stainless steel cannulas implanted bilaterally in the NTS, before and 5, 15, and 60 min after bilateral injections of muscimol or baclofen into the NTS. The responses to 5-HT were tested before and after the injection of atropine methyl bromide. Muscimol (50 pmol/50 nl, N = 8) into the NTS increased basal mean arterial pressure (MAP) from 115 ± 4 to 144 ± 6 mmHg, did not change basal heart rate (HR) and reduced the bradycardia (-40 ± 14 and -73 ± 26 bpm at 5 and 15 min, respectively, vs -180 ± 20 bpm for the control) and hypotension (-11 ± 4 and -14 ± 4 mmHg, vs -40 ± 9 mmHg for the control) elicited by 5-HT. Baclofen (12.5 pmol/50 nl, N = 7) into the NTS also increased basal MAP, but did not change basal HR, bradycardia or hypotension in response to 5-HT injections. Atropine methyl bromide (1 mg/kg body weight) injected iv reduced the bradycardic and hypotensive responses to 5-HT injections. The stimulation of GABA A receptors in the NTS of awake rats elicits a significant increase in basal MAP and decreases the cardiac Bezold-Jarisch reflex responses to iv 5-HT injections.
Resumo:
According to the concepts of cognitive neuropsychology, there are two principal routes of reading processing: a lexical route, in which global reading of words occurs and a phonological route, responsible for the conversion of the graphemes into their respective phonemes. In the present study, functional magnetic resonance imaging (fMRI) was used to investigate the patterns of cerebral activation in lexical and phonological reading by 13 healthy women with a formal educational level greater than 11 years. Participants were submitted to a silent reading task containing three types of stimuli: real words (irregular and foreign words), nonwords and illegitimate graphic stimuli. An increased number of activated voxels were identified by fMRI in the word reading (lexical processing) than in the nonword reading (phonological processing) task. In word reading, activation was greater than for nonwords in the following areas: superior, middle and inferior frontal gyri, and bilateral superior temporal gyrus, right cerebellum and the left precentral gyrus, as indicated by fMRI. In the reading of nonwords, the activation was predominant in the right cerebellum and in the left superior temporal gyrus. The results of the present study suggest the existence of differences in the patterns of cerebral activation during lexical and phonological reading, with greater involvement of the right hemisphere in reading words than nonwords.
Resumo:
We evaluated the hemodynamic pattern and the contribution of the sympathetic nervous system in conscious and anesthetized (1.4 g/kg urethane, iv) Wistar rats with L-NAME-induced hypertension (20 mg/kg daily). The basal hemodynamic profile was similar for hypertensive animals, conscious (N = 12) or anesthetized (N = 12) treated with L-NAME for 2 or 7 days: increase of total peripheral resistance associated with a decrease of cardiac output (CO) compared to normotensive animals, conscious (N = 14) or anesthetized (N = 14). Sympathetic blockade with hexamethonium essentially caused a decrease in total peripheral resistance in hypertensive animals (conscious, 2 days: from (means ± SEM) 2.47 ± 0.08 to 2.14 ± 0.07; conscious, 7 days: from 2.85 ± 0.13 to 2.07 ± 0.33; anesthetized, 2 days: from 3.00 ± 0.09 to 1.83 ± 0.25 and anesthetized, 7 days: from 3.56 ± 0.11 to 1.53 ± 0.10 mmHg mL-1 min-1) with no change in CO in either group. However, in the normotensive group a fall in CO (conscious: from 125 ± 4.5 to 96 ± 4; anesthetized: from 118 ± 1.5 to 104 ± 5.5 mL/min) was observed. The responses after hexamethonium were more prominent in the hypertensive anesthetized group. However, no difference was observed between conscious and anesthetized normotensive rats in response to sympathetic blockade. The present study shows that the vasoconstriction in response to L-NAME was mediated by the sympathetic drive. The sympathetic tone plays an important role in the initiation and maintenance of hypertension.
Resumo:
The immune consequences of in utero HIV exposure to uninfected children whose mothers were submitted to highly active antiretroviral therapy (HAART) during gestation are not well defined. We evaluated 45 HIV-exposed uninfected (ENI) neonates and 45 healthy unexposed control (CT) neonates. All HIV-infected mothers received HAART during pregnancy, and the viral load at delivery was <50 copies/mL for 56.8%. Twenty-three ENI neonates were further evaluated after 12 months and compared to 23 unexposed healthy age-matched infants. Immunophenotyping was performed by flow cytometry in cord and peripheral blood. Cord blood lymphocyte numbers did not differ between groups. However, ENI neonates had a lower percentage of naive T cells than CT neonates (CD4+, 76.6 vs 83.1%, P < 0.001; CD8+, 70.9 vs 79.6%, P = 0.003) and higher percentages of central memory T cells than CT neonates (CD4+, 13.9 vs 8.7%, P < 0.001; CD8+, 8.6 vs 4.8%, P = 0.001). CD38 mean fluorescence intensity of T cells was higher in ENI neonates (CD4+, 62.2 vs 52.1, P = 0.007; CD8+, 47.7 vs 35.3, P < 0.001). At 12 months, ENI infants still had higher mean fluorescence intensity of CD38 on T cells (CD4+, 34.2 vs 23.3, P < 0.001; CD8+, 26.8 vs 19.4, P = 0.035). Despite effective maternal virologic control at delivery, HIV-exposed uninfected children were born with lower levels of naive T cells. Immune activation was present at birth and remained until at least 12 months of age, suggesting that in utero exposure to HIV causes subtle immune abnormalities.
Resumo:
Dopaminergic neurotransmission is involved in the regulation of sleep. In particular, the nigrostriatal pathway is an important center of sleep regulation. We hypothesized that dopaminergic neurons located in substantia nigra pars compacta (SNpc) could be activated by gentle handling, a method to obtain sleep deprivation (SD). Adult male C57/BL6J mice (N = 5/group) were distributed into non-SD (NSD) or SD groups. SD animals were subjected to SD once for 1 or 3 h by gentle handling. Two experiments were performed. The first determined the activation of SNpc neurons after SD, and the second examined the same parameters after pharmacologically induced dopaminergic depletion using intraperitoneal reserpine (2 mg/kg). After 1 or 3 h, SD and NSD mice were subjected to motor evaluation using the open field test. Immediately after the behavioral test, the mice were perfused intracardially to fix the brain and for immunohistochemical analysis of c-Fos protein expression within the SNpc. The open field test indicated that SD for 1 or 3 h did not modify motor behavior. However, c-Fos protein expression was increased after 1 h of SD compared with the NSD and 3-h SD groups. These immunohistochemistry data indicate that these periods of SD are not able to produce dopaminergic supersensitivity. Nevertheless, the increased expression of c-Fos within the SNpc suggests that dopaminergic nigral activation was triggered by SD earlier than motor responsiveness. Dopamine-depleted mice (experiment 2) exhibited a similar increase of c-Fos expression compared to control animals indicating that dopamine neurons are still activated in the 1-h SD group despite the exhaustion of dopamine. This finding suggests that this range (2-5-fold) of neuronal activation may serve as a marker of SD.
Acute and chronic electrical activation of baroreceptor afferents in awake and anesthetized subjects
Resumo:
Electrical stimulation of baroreceptor afferents was used in the 1960's in several species, including human beings, for the treatment of refractory hypertension. This approach bypasses the site of baroreceptor mechanosensory transduction. Chronic electrical stimulation of arterial baroreceptors, particularly of the carotid sinus nerve (Hering's nerve), was proposed as an ultimate effort to treat refractory hypertension and angina pectoris due to the limited nature of pharmacological therapy available at that time. Nevertheless, this approach was abandoned in the early 1970's due to technical limitations of implantable devices and to the development of better-tolerated antihypertensive medications. More recently, our laboratory developed the technique of electrical stimulation of the aortic depressor nerve in conscious rats, enabling access to hemodynamic responses without the undesirable effect of anesthesia. In addition, electrical stimulation of the aortic depressor nerve allows assessment of the hemodynamic responses and the sympathovagal balance of the heart in hypertensive rats, which exhibit a well-known decrease in baroreflex sensitivity, usually attributed to baroreceptor ending dysfunction. Recently, there has been renewed interest in using electrical stimulation of the carotid sinus, but not the carotid sinus nerve, to lower blood pressure in conscious hypertensive dogs as well as in hypertensive patients. Notably, previous undesirable technical outcomes associated with electrical stimulation of the carotid sinus nerve observed in the 1960's and 1970's have been overcome. Furthermore, promising data have been recently reported from clinical trials that evaluated the efficacy of carotid sinus stimulation in hypertensive patients with drug resistant hypertension.