40 resultados para Raman generation
Resumo:
IR bands related to M-C stretchings are not diagnostically significant for the identification of carbonyl groups in the spectra of carbonyl complexes. Otherwise, the frequency, intensity and number of bands for the CO stretchings provide very useful informations about the number of CO ligands and many others structural proprieties, like the presence of bridged CO groups. We report about a relatively simple and useful method for the determination of the CO stretchings of carbonyl complexes, which considers only the bond stretching internal coordinates of the CO groups.
Resumo:
In this paper a methodology for the computation of Raman scattering cross-sections and depolarization ratios within the Placzek Polarizability Theory is described. The polarizability gradients are derived from the values of the dynamic polarizabilities computed at the excitation frequencies using ab initio Linear Response Theory. A sample application of the computational program, at the HF, MP2 and CCSD levels of theory, is presented for H2O and NH3. The results show that high correlated levels of theory are needed to achieve good agreement with experimental data.
Resumo:
Eighteen circular blocks of resins cured either by a LED or a halogen lamp (20, 40 and 60 s), had their top (T) and bottom (B) surfaces studied using a FT-Raman spectrometer. Systematic changes in the intensity of the methacrylate C=C stretching mode at 1638 cm-1 as a function of exposure duration were observed. The calculated degree of conversion (DC) ranged from 45.0% (B) to 52.0% (T) and from 49.0% (B) to 55.0% (T) for the LED and halogen lamp, respectively. LED and halogen light produced similar DC values with 40 and 60 s of irradiation.
Resumo:
Raman dispersion refers to the dependence of the position of Raman bands on the energy of the exciting radiation. In this work, the three main models currently used to explain this phenomenon (Conjugated Length Model, Amplitude Mode Model and Effective Conjugation Coordinate Model) are discussed. Raman dispersion is a consequence of pi electron delocalization, but each model describes in a different way how pi electron delocalization affects the position of Raman bands. Here the features, qualities and problems of the three models are highlighted.
Resumo:
The structural and surface properties of reticulated vitreous carbon (RVC) were discussed as a function of its heat treatment temperature (HTT), for samples produced in the range from 700 to 2000 ºC, using the furfuryl precursor resin. The samples were analyzed by x-ray photoelectron spectroscopy, first and second order Raman scattering as well as electrochemical response. Exploring the material turbostraticity concept, the interdependence between the RVC chemical surface variation and its defects were demonstrated. The influence of heteroatom presence was discussed in the material ordering for HTT lower than 1300 ºC while the graphitization process evolution was also pointed out for HTT higher than 1500 ºC.
Resumo:
In the present work, the development of a method based on the coupling of flow analysis (FA), hydride generation (HG), and derivative molecular absorption spectrophotometry (D-EAM) in gas phase (GP), is described in order to determine total antimony in antileishmanial products. Second derivative order (D²224nm) of the absorption spectrum (190 - 300 nm) is utilized as measurement criterion. Each one of the parameters involved in the development of the proposed method was examined and optimized. The utilization of the EAM in GP as detection system in a continuous mode instead of atomic absorption spectrometry represents the great potential of the analytic proposal.
Resumo:
This paper reports the use of Raman and infrared techniques for the qualitative and quantitative analysis of plasticizers in polyvinylchloride (PVC) commercial films. FT-Raman marker bands were indentified for di-2-ethyl-hexyl adipate (DEHA) and di-2-ethyl-hexyl phthalate (DEHP), allowing for the rapid identification of these species in the commercial film. Quantitative analysis by FT-IR resulted in plasticizers concentrations ranging from 11 to 27% (w/w). Considering the little sample preparation and the low cost of the techniques, FT-IR and FT-Raman are viable techniques for a first assessment of plasticizers in commercial samples.
Resumo:
Glass-ceramics are prepared by controlled separation of crystal phases in glasses, leading to uniform and dense grain structures. On the other hand, chemical leaching of soluble crystal phases yields porous glass-ceramics with important applications. Here, glass/ceramic interfaces of niobo-, vanado- and titano-phosphate glasses were studied by micro-Raman spectroscopy, whose spatial resolution revealed the multiphase structures. Phase-separation mechanisms were also determined by this technique, revealing that interface composition remained unchanged as the crystallization front advanced for niobo- and vanadophosphate glasses (interface-controlled crystallization). For titanophosphate glasses, phase composition changed continuously with time up to the equilibrium composition, indicating a spinodal-type phase separation.
Resumo:
In the present work, Raman Microscopy was employed in the characterization of the pigments used in a drawing assigned to Tarsila do Amaral, one of the most important Brazilian artists. The work (colored pencil on paper), supposedly produced in the 1920 decade, is of a very simple composition, where blue, green and brown were the colors used. Prussian Blue was found as the blue pigment, whereas green was a mixture of copper phthalocyanine and a yellow dye, probably a diarylide; the brown pigment was a carbonaceous compound. Prussian Blue was replaced by phthalocyanine as pigment since the end of the 1930's and the possibility that it could have been used as pigment in the 1920's can be ruled out.
Resumo:
Rock art paintings from Abrigo do Janelão (Minas Gerais, Brazil) were non-destructively investigated by Raman Microscopy, aiming at the identification of materials used, their interaction and degradation. This technique is particularly tailored for heterogeneous samples and allows unequivocal identification of the substances present in the investigated sample. Pigments, were identified together with products of microbiological degradation; no binders were detected. White pigment was identified as calcite (CaCO3), whereas charcoal was used as black, goethite (α-FeOOH) as yellow and hematite (α-Fe2O3) as red. Whewellite (CaC2O4.H2O) and weddelite (CaC2O4.2H2O) were detected and their origin was assigned to degradation products from microbiological activity.
Resumo:
Raman imaging spectroscopy is a highly useful analytical tool that provides spatial and spectral information on a sample. However, CCD detectors used in dispersive instruments present the drawback of being sensitive to cosmic rays, giving rise to spikes in Raman spectra. Spikes influence variance structures and must be removed prior to the use of multivariate techniques. A new algorithm for correction of spikes in Raman imaging was developed using an approach based on comparison of nearest neighbor pixels. The algorithm showed characteristics including simplicity, rapidity, selectivity and high quality in spike removal from hyperspectral images.
Resumo:
Agronomic biomass yields of forage sorghum BRS 655 presented similar results to other energy crops, producing 9 to 12.6 tons/ha (dry mass) of sorghum straw. The objective of this study was to evaluate the lignocellulosic part of this cultivar in terms of its potential in the different unit processes in the production of cellulosic ethanol, measuring the effects of pretreatment and enzymatic hydrolysis. Three types of pre-treatments for two reaction times were conducted to evaluate the characteristics of the pulp for subsequent saccharification. The pulp pretreated by alkali, and by acid followed by delignification, attained hydrolysis rates of over 90%.
Resumo:
In general, laboratory activities are costly in terms of time, space, and money. As such, the ability to provide realistically simulated laboratory data that enables students to practice data analysis techniques as a complementary activity would be expected to reduce these costs while opening up very interesting possibilities. In the present work, a novel methodology is presented for design of analytical chemistry instrumental analysis exercises that can be automatically personalized for each student and the results evaluated immediately. The proposed system provides each student with a different set of experimental data generated randomly while satisfying a set of constraints, rather than using data obtained from actual laboratory work. This allows the instructor to provide students with a set of practical problems to complement their regular laboratory work along with the corresponding feedback provided by the system's automatic evaluation process. To this end, the Goodle Grading Management System (GMS), an innovative web-based educational tool for automating the collection and assessment of practical exercises for engineering and scientific courses, was developed. The proposed methodology takes full advantage of the Goodle GMS fusion code architecture. The design of a particular exercise is provided ad hoc by the instructor and requires basic Matlab knowledge. The system has been employed with satisfactory results in several university courses. To demonstrate the automatic evaluation process, three exercises are presented in detail. The first exercise involves a linear regression analysis of data and the calculation of the quality parameters of an instrumental analysis method. The second and third exercises address two different comparison tests, a comparison test of the mean and a t-paired test.
Resumo:
The edafoclimatic conditions of the Brazilian semiarid region favor the water loss by surface runoff. The state of Ceará, almost completely covered by semiarid, has developed public policies for the construction of dams in order to attend the varied water demand. Several hydrological models were developed to support decisive processes in the complex management of reservoirs. This study aimed to establish a methodology for obtaining a georeferenced database suitable for use as input data in hydrological modeling in the semiarid of Ceará. It was used images of Landsat satellite and SRTM Mission, and soil maps of the state of Ceará. The Landsat images allowed the determination of the land cover and the SRTM Mission images, the automatic delineation of hydrographic basins. The soil type was obtained through the soil map. The database was obtained for Jaguaribe River hydrographic basin, in the state of Ceará, and is applicable to hydrological modeling based on the Curve Number method for estimating the surface runoff.
Resumo:
At present stage the analytical design of wave tolerance for floating structures and vessels is still imperfect due to the mutually complex and nonlinear phenomena between structures and waves. Wave tolerance design is usually carried out through iterative evaluations of results from model tests in a wave basin, and this is done in order to reach a final structural design. The wave generation has then become an important technology in the field of the coastal and ocean engineering. This paper summarizes the facilities of a test basin and a wave maker in Japan and also surveys the methodology of the generation of ocean waves in a test basin.