225 resultados para RAPID DETECTION
Resumo:
Enterococci are Gram-positive cocci saprophyte of the human gastrointestinal tract, diners who act as opportunistic pathogens. They can cause infections in patients hospitalized for a long time or who have received multiple antibiotic therapy. Enterococcus faecalis and Enterococcus faecium are the most common species in human infections. To evaluate the possibility of rapid detection of these species and their occurrence in the blood of newborns with suspected nosocomial infection, blood samples were collected from 50 newborns with late infections, admitted to the Neonatal Care Unit of the University Hospital Federal de Mato Grosso do Sul (UFMS-HU), from September 2010 to January 2011. The samples were subjected to conventional PCR and real time PCR (qPCR) to search for Enterococcus faecium and Enterococcus faecalis, respectively. The PCR results were compared with respective blood cultures from 40 patients. No blood cultures were positive for Enterococci, however, eight blood samples were identified as genomic DNA of Enterococcus faecium by qPCR and 22 blood samples were detected as genomic DNA of Enterococcus faecalis by conventional PCR. These findings are important because of the clinical severity of the evaluated patients who were found positive by conventional PCR and not through routine microbiological methods.
Resumo:
About one third of the world population is infected with tubercle bacilli, causing eight million new cases of tuberculosis (TB) and three million deaths each year. After years of lack of interest in the disease, World Health Organization recently declared TB a global emergency and it is clear that there is need for more efficient national TB programs and newly defined research priorities. A more complete epidemiology of tuberculosis will lead to a better identification of index cases and to a more efficient treatment of the disease. Recently, new molecular tools became available for the identification of strains of Mycobacterium tuberculosis (M. tuberculosis), allowing a better recognition of transmission routes of defined strains. Both a standardized restriction-fragment-length-polymorphism-based methodology for epidemiological studies on a large scale and deoxyribonucleic acids (DNA) amplification-based methods that allow rapid detection of outbreaks with multidrug-resistant (MDR) strains, often characterized by high mortality rates, have been developed. This review comments on the existing methods of DNA-based recognition of M. tuberculosis strains and their peculiarities. It also summarizes literature data on the application of molecular fingerprinting for detection of outbreaks of M. tuberculosis, for identification of index cases, for study of interaction between TB and infection with the human immunodeficiency virus, for analysis of the behavior of MDR strains, for a better understanding of risk factors for transmission of TB within communities and for population-based studies of TB transmission within and between countries
Resumo:
Coagulase-negative staphylococci (CoNS) are an important cause of nosocomial bacteremia, specially in patients with indwelling devices or those submitted to invasive medical procedures. The identification of species and the accurate and rapid detection of methicillin resistance are directly dependent on the quality of the identification and susceptibility tests used, either manual or automated. The objective of this study was to evaluate the accuracy of two automated systems MicroScan and Vitek - in the identification of CoNS species and determination of susceptibility to methicillin, considering as gold standard the biochemical tests and the characterization of the mecA gene by polymerase chain reaction, respectively. MicroScan presented better results in the identification of CoNS species (accuracy of 96.8 vs 78.8%, respectively); isolates from the following species had no precise identification: Staphylococcus haemolyticus, S. simulans, and S. capitis. Both systems were similar in the characterization of methicillin resistance. The higher discrepancies for gene mec detection were observed among species other than S. epidermidis (S. hominis, S. saprophyticus, S. sciuri, S. haemolyticus, S. warneri, S. cohnii), and those with borderline MICs.
Resumo:
Simple and rapid latex-based diagnostic tests have been used for detecting specific antigens or antibodies in several diseases. In this article, we present the preliminary results obtained with a latex agglutination test (LAT) for diagnosing neurocysticercosis by detection of antibodies in CSF. A total of 43 CSF samples were assayed by the LAT: 19 CSF samples from patients with neurocysticercosis and 24 CSF samples from patients with other neurologic disorders (neurosyphilis, n = 8; neurotoxoplasmosis, n = 3; viral meningitis, n = 4, chronic headache, n = 9). The LAT exhibited 89.5% sensitivity and 75% specificity. The use of LAT seems to be an additional approach for the screening of neurocysticercosis with advantage of simplicity and rapidity. Further studies could be performed using purified antigens and serum samples.
Resumo:
Mycobaterium leprae infection was investigated in armadillos from the State of Espírito Santo, Brazil. The ML Flow test was performed on 37 nine-banded armadillos and positive results were found in 11 (29.7%). The ML Flow test may be used to identify possible sources of Mycobaterium leprae among wild armadillos.
Resumo:
Introduction Rapid diagnostic tests (RDTs) may improve the early detection of visceral leishmaniasis (VL), but their real-world performance requires additional study. Therefore, we evaluated the performance of an rK39-based RDT (Kalazar Detect™) for the detection of VL in an endemic, large urban area. Methods Data were collected from a registry of rK39 RDT performed at 11 emergency care units in Belo Horizonte, Brazil, and from a national database of reportable communicable diseases of the Sistema de Informação de Agravos de Notificação (SINAN). Results The rapid rK39 test was performed in 476 patients, with 114 (23.9%) positive results. The analysis of rK39 RDT performance was based on 381 (80%) cases reported to the SINAN database, of which 145 (38.1%) were confirmed cases. Estimates for sensitivity and specificity were 72.4% (95% CI: 64.6-79%) and 99.6% (95%CI: 97.6-99.9%), respectively. Positive and negative predictive values were estimated at 99.1% (95%CI: 94.9-99.8%) and 85.5% (95%CI: 80.8-89.1%), respectively. In addition, close agreement between the rK39 RDT and indirect immunofluorescence was observed. Conclusions In summary, the rK39 RDT showed a high specificity but only moderate sensitivity. In endemic areas for VL, treatment may be considered in cases with clinical manifestations and a positive rK39 RDT, but those with a negative test should be subjected to further investigation.
Resumo:
The present report describes an alternative method for in vitro detection of HIV-1 -specific antibody secretion in 24h of culture employing as stimulant of peripheral blood mononuclear cells the disrupted inactivated whole virus adsorbed onto microwells in a commercial ELISA kit plates. The results obtained from this technique have showed high sensitivity and specificity since it was capable of detecting HIV-1 infection early after birth. There were neither false-positivity nor false-negativity when blood samples obtained from HIV-1 seronegative asymptomatic individuals, and HIV-1 seropositive adult patients were analized. This rapid, low cost, simple, highly sensitive and specific assay can be extremely useful for early diagnosis of pediatric HIV infection.
Resumo:
The objective of the current study was to compare two rapid methods, the BBL Mycobacteria Growth Indicator Tube (MGIT TM) and Biotec FASTPlaque TB TM (FPTB) assays, with the conventional Löwenstein-Jensen (LJ) media assay to diagnose mycobacterial infections from paucibacillary clinical specimens. For evaluation of the clinical utility of the BBL MGIT TM and FPTB assays, respiratory tract specimens (n = 208), with scanty bacilli or clinically evident, smear negative cases and non-respiratory tract specimens (n = 119) were analyzed and the performance of each assay was compared with LJ media. MGIT and FPTB demonstrated a greater sensitivity (95.92% and 87.68%), specificity (94.59% and 98.78%), positive predictive value (94.91% and 99.16%) and negative predictive value (96.56% and 90.92%), respectively, compared to LJ culture for both respiratory tract and non-respiratory tract specimens. However, the FPTB assay was unable to detect nontuberculous mycobacteria and few Mycobacterium tuberculosis complex cases from paucibacillary clinical specimens. It is likely that the analytical sensitivity of FPTB is moderately low and may not be useful for the direct detection of tuberculosis in paucibacillary specimens. The current study concluded that MGIT was a dependable, highly efficient system for recovery of M. tuberculosis complexes and nontuberculous mycobacteria from both respiratory and non-respiratory tract specimens in combination with LJ media.
Resumo:
A single strain of Mycobacterium abscessus subsp. bolletii, characterised by a particular rpoB sequevar and two highly related pulsed field gel electrophoresis patterns has been responsible for a nationwide outbreak of surgical infections in Brazil since 2004. In this study, we developed molecular tests based on polymerase chain reaction restriction-enzyme analysis (PRA) and sequencing for the rapid identification of this strain. Sequences of 15 DNA regions conserved in mycobacteria were retrieved from GenBank or sequenced and analysed in silico. Single nucleotide polymorphisms specific to the epidemic strain and located in enzyme recognition sites were detected in rpoB, the 3' region of the 16S rDNA and gyrB. The three tests that were developed, i.e., PRA-rpoB, PRA-16S and gyrB sequence analysis, showed 100%, 100% and 92.31% sensitivity and 93.06%, 90.28% and 100% specificity, respectively, for the discrimination of the surgical strain from other M. abscessus subsp. bolletii isolates, including 116 isolates from 95 patients, one environmental isolate and two type strains. The results of the three tests were stable, as shown by results obtained for different isolates from the same patient. In conclusion, due to the clinical and epidemiological importance of this strain, these tests could be implemented in reference laboratories for the rapid preliminary diagnosis and epidemiological surveillance of this epidemic strain.
Resumo:
Bordetella bronchiseptica causes acute and chronic respiratory infections in diverse animal species and occasionally in humans. In this study, we described the establishment of a simple, sensitive and cost-efficient loop-mediated isothermal amplification (LAMP) assay for the detection of B. bronchiseptica. A set of primers towards a 235 bp region within the flagellum gene of B. bronchiseptica was designed with online software.. The specificity of the LAMP assay was examined by using 6 porcine pathogens and 100 nasal swabs collected from healthy pigs and suspect infected pigs. The results indicated that positive reactions were confirmed for all B. bronchiseptica and no cross-reactivity was observed from other non-B. bronchiseptica. In sensitivity evaluations, the technique successfully detected a serial dilutions of extracted B. bronchiseptica DNA with a detection limit of 9 copies, which was 10 times more sensitive than that of PCR. Compared with conventional PCR, the higher sensitivity of LAMP method and no need for the complex instrumentation make this LAMP assay a promising alternative for the diagnosis of B. bronchiseptica in rural areas and developing countries where there lacks of complex laboratory services.
Resumo:
A passive haemagglutination test (PHA) for human neurocysticercosis was standardized and evaluated for the detection of specific antibodies to Cysticercus cellulosae in cerebrospinal fluid (CSF). For the assay, formaldehyde-treated group O Rh-human red cells coated with the cysticerci crude total saline extract (TS) antigen were employed. A total of 115 CSF samples from patients with neurocysticercosis was analysed, of these 94 presented reactivity, corresponding to 81.7% sensitivity, in which confidence limit of 95% probability (CL95%) ranged from 74.5% to 88.9%. Eighty-nine CSF samples derived from individuals of control group presented as nonreactive in 94.4% (CL95% from 89.6% to 99.2%). The positive and negative predictive values were 1.4% and 99.9%, respectively, considering the mean rate of that this assay provide a rapid, highly reproducible, and moderately sensitive mean of detecting specific antibodies in CSF samples.
Resumo:
A dot-enzyme-linked immunosorbent assay (Dot-ELISA) for pneumococcal antigen detection was standardized in view of the need for a rapid and accurate immunodiagnosis of acute pneumococcal pneumonia. A total of 442 pleural fluid effusion samples (PFES) from children with clinical and laboratory diagnoses of acute bacterial pneumonia, plus 38 control PFES from tuberculosis patients and 20 negative control serum samples from healthy children were evaluated by Dot-ELISA. The samples were previously treated with 0.1 M EDTA pH 7.5 at 90°C for 10 min and dotted on nitrocellulose membrane. Pneumococcal omniserum diluted at 1:200 was employed in this assay for antigen detection. When compared with standard bacterial culture, counterimmunoelectrophoresis and latex agglutination techniques, the Dot-ELISA results showed relative indices of 0.940 to sensitivity, 0.830 to specificity and 0.760 to agreement. Pneumococcal omniserum proved to be an optimal polyvalent antiserum for the detection of pneumococcal antigen by Dot-ELISA. Dot-ELISA proved to be a practical alternative technique for the diagnosis of pneumococcal pneumonia.
Resumo:
Chronic meningitism is a less frequent manifestation of neurocysticercosis caused by Taenia solium cysticerci. In the present study we used Co-agglutination (Co-A), a simple and rapid slide agglutination test to detect specific Cysticercus antigen in the 67 cerebrospinal fluid (CSF) samples from patients with chronic meningitis of unknown etiology. The results were compared with that of ELISA for detection of antibodies. Among these samples four (5.97%) were positive for Cysticercus antigen by Co-A test and six (8.95%) were positive for antibodies by ELISA. Two samples were positive by both Co-A and ELISA, two were positive only by Co-A and four were positive only by ELISA. In the present study, although Cysticercus antigen and antibodies were present in CSF samples from eight (11.94%) patients, we cannot affirm that all the cases of chronic meningitis are due to cysticercosis, but for any case of chronic meningitis of unknown origin, it would be useful to consider the possibility of cysticercal meningitis.
Resumo:
Adenovirus (AdV) respiratory infections are usually described as being associated with high mortality rates. Laboratory diagnosis is essential for the establishment of the appropriate therapy, and for guiding the implementation of preventive measures in order to prevent the spread of the infection. Aiming to analyze the sensitivity and specificity of the laboratorial diagnosis methods available, we compared antigen detection by indirect immunofluorescence assay (IF), and a specific nested polymerase chain reaction (PCR), to detect AdV in respiratory samples collected from patients admitted to hospital with acute respiratory disease. Positive samples were inoculated into a cell culture to confirm the results. We analyzed 381 samples from the nasopharyngeal aspirates collected during the year 2008; of these, 2.6% tested were positive for adenovirus through IF and 10% through PCR; positive isolation was obtained in 40% and 26% of these cases, respectively. Most infected patients were children under six months of age, and despite of the fact that a significant number of patients required intensive care, the mortality rate was low (5%). In conclusion, molecular methods were found to be useful for rapid diagnosis of adenovirus infections with higher sensitivity than antigen detection; their introduction permitted a significant increase in diagnoses of adenovirus infections.
Resumo:
A ligase chain reaction DNA amplification method for direct detection of Mycobacterium tuberculosis (Abbott LCx MTB) in respiratory specimens was evaluated. Results from LCx MTB Assay were compared with those from acid fast bacilli smear, culture, and final clinical diagnosis for each patient. A total of 297 respiratory specimens (sputum and bronchial lavage) from 193 patients were tested. The sensitivity, specificity, positive predictive value and negative predictive value of LCx vs culture were 92.7%, 93%, 67.8% and 98.7%, respectively. When compared to the clinical final diagnosis, the sensitivity, specificity, PPV and NPV for LCx were 88.9%, 96.8%, 86.5% and 97.4%, respectively. The sensitivity of LCx MTB assay was 75% for smear-negative, culture positive samples. The results indicate that LCx MTB assay is a rapid, simple and valuable technique as a complementary tool for the diagnosis of tuberculosis.