163 resultados para Plant tissues
Resumo:
Since the discovery of bovine insulin in plants, much effort has been devoted to the characterization of these proteins and elucidation of their functions. We report here the isolation of a protein with similar molecular mass and same amino acid sequence to bovine insulin from developing fruits of cowpea (Vigna unguiculata) genotype Epace 10. Insulin was measured by ELISA using an anti-human insulin antibody and was detected both in empty pods and seed coats but not in the embryo. The highest concentrations (about 0.5 ng/µg of protein) of the protein were detected in seed coats at 16 and 18 days after pollination, and the values were 1.6 to 4.0 times higher than those found for isolated pods tested on any day. N-terminal amino acid sequencing of insulin was performed on the protein purified by C4-HPLC. The significance of the presence of insulin in these plant tissues is not fully understood but we speculate that it may be involved in the transport of carbohydrate to the fruit.
Resumo:
Herbaspirillum seropedicae is an endophytic diazotrophic bacterium, which associates with important agricultural plants. In the present study, we have investigated the attachment to and internal colonization of Phaseolus vulgaris roots by the H. seropedicae wild-type strain SMR1 and by a strain of H. seropedicae expressing a red fluorescent protein (DsRed) to track the bacterium in the plant tissues. Two-day-old P. vulgaris roots were incubated at 30°C for 15 min with 6 x 10(8) CFU/mL H. seropedicae SMR1 or RAM4. Three days after inoculation, 4 x 10(4) cells of endophytic H. seropedicae SMR1 were recovered per gram of fresh root, and 9 days after inoculation the number of endophytes increased to 4 x 10(6) CFU/g. The identity of the recovered bacteria was confirmed by amplification and sequencing of the 16SrRNA gene. Furthermore, confocal microscopy of P. vulgaris roots inoculated with H. seropedicae RAM4 showed that the bacterial cells were attached to the root surface 15 min after inoculation; fluorescent bacteria were visible in the internal tissues after 24 h and were found in the central cylinder after 72 h, showing that H. seropedicae RAM4 is capable of colonizing the roots of the dicotyledon P. vulgaris. Determination of dry weight of common bean inoculated with H. seropedicae SMR1 suggested that this bacterium has a negative effect on the growth of P. vulgaris.
Resumo:
Mimic biological structures such as the cell wall of plant tissues may be an alternative to obtain biodegradable films with improved mechanical and water vapor barrier properties. This study aims to evaluate the mechanical properties and water vapor permeability (WVP) of films produced by using the solvent-casting technique from blended methylcellulose, glucomannan, pectin and gelatin. First, films from polysaccharides at pH 4 were produced. The film with the best mechanical performance (tensile strength = 72.63 MPa; elongation = 9.85%) was obtained from methylcellulose-glucomannan-pectin at ratio 1:4:1, respectively. Then, gelatin was added to this polysaccharide blend and the pH was adjusted to 4, 5 and 6. Results showed significant improvement in WVP when films were made at pH 5 and at polysaccharides/gelatin ratio of 90/10 and 10/90, reaching 0.094 and 0.118 g.mm/h.m².kPa as values, respectively. Films with the best mechanical properties were obtained from the blend of polysaccharides, whereas WVP was improved from the blend of polysaccharides and gelatin at pH 5.
Resumo:
The importance of minimally processed commodities in the retail groceries of most developed countries has been rising continuously during the last decades. Cantaloupe melon is used more than any other fruit in fresh-cut processing. Ultraviolet (UV) light has been extensively used to simulate biological stres in plants and for determining resistance mechanisms of plant tissues. In this study the effect of ultraviolet irradiation on some properties of fresh-cut cantalope melon was determined during storage. Freshly cut cantalope melons cubes treated with ultraviolet irradiation at the doses of 1, 2 or 3 min before storage, and then placed in a cold room at 5±1°C temperature and 85-90% RH. Hue angle values of control group is low compared to UV-C treated samples, whereas L values of is high. EL of UV treated samples higher than those of control group. Total soluble solids of fresh-cut melon samples in UC3 treatment increased during storage. The results indicate that UV-C treatments on fresh-cut cantaloupe melon cubes increased total soluble solids independently from water loss.
Resumo:
Plant cell and tissue culture in a simple fashion refers to techniques which utilize either single plant cells, groups of unorganized cells (callus) or organized tissues or organs put in culture, under controlled sterile conditions.
Resumo:
In field experiments, the density of Macrophomina phaseolina microsclerotia in root tissues of naturally colonized soybean cultivars was quantified. The density of free sclerotia on the soil was determined for plots of crop rotation (soybean-corn) and soybean monoculture soon after soybean harvest. M. phaseolina natural infection was also determined for the roots of weeds grown in the experimental area. To verify the ability of M. phaseolina to colonize dead substrates, senesced stem segments from the main plant species representing the agricultural system of southern Brazil were exposed on naturally infested soil for 30 and 60 days. To quantify the sclerotia, the methodology of Cloud and Rupe (1991) and Mengistu et al. (2007) was employed. Sclerotium density, assessed based on colony forming units (CFU), ranged from 156 to 1,108/g root tissue. Sclerotium longevity, also assessed according to CFU, was 157 days for the rotation and 163 days for the monoculture system. M. phaseolina did not colonize saprophytically any dead stem segment of Avena strigosa,Avena sativa,Hordeum vulgare,Brassica napus,Gossypium hirsutum,Secale cereale,Helianthus annus,Triticosecalerimpaui, and Triticum aestivum. Mp was isolated from infected root tissues of Amaranthus viridis,Bidens pilosa,Cardiospermum halicacabum,Euphorbia heterophylla,Ipomoea sp., and Richardia brasiliensis. The survival mechanisms of M. phaseolina studied in this paper met the microsclerotium longevity in soybean root tissues, free on the soil, as well as asymptomatic colonization of weeds.
Resumo:
Fungal diseases are important factors limiting common bean yield. White mold is one of the main diseases caused by soil pathogens. The objective of this study was to quantify the distribution of a fungicide solution sprayed into the canopy of bean plants by spectrophotometry, using a boom sprayer with and without air assistance. The experiment was arranged in a 2 x 2 x 2 factorial (two types of nozzles, two application rates, and air assistance on and off) randomized block design with four replications. Air assistance influenced the deposition of solution on the bean plant and yield increased significantly with the increased rate of application and air assistance in the boom sprayer.
Resumo:
In vitro propagation has become an effective practice for large-scale production of strawberry plants. The objective of this study was to evaluate the hyperhydricity and the multiplication capacity of two strawberry varieties (Fragaria x ananassa Duch. 'Dover' and 'Burkley') propagated in vitro. Plants maintained in MS medium supplemented with 1.0 mg L-1 BA were individualized and transferred to the same medium solidified with Agar (6.5 g L-1) or Phytagel® (2.5 g L-1) and BA at different concentrations (0; 0.5; 1.0; 2.0 and 3.0 mg L-1). Biochemical and anatomical analyses were carried out, as well as the analysis of the morphological hyperhydricity characteristics. The analysis of data showed: a) the increase in cytokinin concentration increased hyperhydricity frequency in both varieties; b) at concentrations up to 2.0 mg L-1 BA, the replacement of Agar by Phytagel® induced a higher formation of hyperhydric shoots; and c) the addition of BA induced oxidative stress, which is characterized by increased antioxidant activity and lipid peroxidation, as well as alterations at the cellular level, such as malformation of stomata and epidermal cells. In conclusion, the culture medium containing 0.5 mg L-1 BA solidified with Agar provided lower hyperhydricity percentages in association with higher rates of shoot proliferation in strawberry.
Resumo:
Differences in levels of lignin in the plant between conventional and transgenic cultivars RR has been reported by several authors, however, there are few studies evaluating the influence of spraying of glyphosate on the lignin in the plant and RR soybean seeds. The aim of this study was to evaluate the physiological quality of RR transgenic soybean seeds and the lignin contents of plants sprayed with the herbicide glyphosate. The assays were conducted both in greenhouse and field in the municipality of Lavras, MG, in the agricultural year 2007/08. The experiment was arranged in a splitplot design with four replicates, considering the treatments hand weeding and herbicide glyphosate as plots, and five RR soybean cultivars (BRS 245 RR, BRS 247 RR, Valiosa RR, Silvânia RR and Baliza RR) as splitplots. In the greenhouse, the cultivars tested were BRS 245 RR and Valiosa RR in a randomized block design with four replicates. The sprayings were carried out at stages V3, V7 and early R5 (3L/ha). The 1000 seed weight, mechanical injury, germination and germination velocity index, emergence velocity index, accelerated aging, electrical conductivity and water soaking seed test, lignin content in the seed coat, in the stem and legumes were determined. The spraying of glyphosate herbicide, in greenhouse and field, did not alter the physiological quality of seeds and the lignin contents in the plant.
Resumo:
The objective of the present work was to evaluate 27 progenies of cocoa crosses considering the agronomic traits and select F1 plants within superior crosses. The experiment was installed in March 2005, in the Experimental Station Joaquim Bahiana (ESJOB), in Itajuipe, Bahia. The area of the experiment is of approximately 3 ha, with a total of 3240 plants. Thirteen evaluations of vegetative brooms, five of cushion brooms and 15 of number of pods per plant were accomplished. Thirty pollinations were made for each selected plant to test for self-compatibility. The production, based on the number of pods per plant, and resistance to witches´ broom indicated CEPEC 94 x CCN 10, RB 39 x CCN 51 and CCN 10 x VB 1151 as superior progenies. All selections tested were self-compatible. The analyses of progenies and individual tree data, associated to visual field observations, allowed the selection of 17 plants which were included in a network of regional tests to determine the phenotypic stability.
Resumo:
All essential nutrients can affect the incidence and severity of plant diseases. Although silicon (Si) is not considered as an essential nutrient for plants, it stands out for its potential to decrease disease intensity in many crops. The mechanism of Si action in plant resistance is still unclear. Si deposition in plant cell walls raised the hypothesis of a possible physical barrier to pathogen penetration. However, the increased activity of phenolic compounds, polyphenol oxidases and peroxidases in plants treated with Si demonstrates the involvement of this element in the induction of plant defense responses. The studies examined in this review address the role of Si in disease control and the possible mechanisms involved in the mode of Si action in disease resistance in plants.
Resumo:
ABSTRACT The analytical determination of nutrient levels in recently mature leaves in order to diagnose nutritional status is based on the fact that leaves are metabolically active and more sensitive to variation in nutrients of the soil. In most of cases, there is a direct well known between foliar content and the development and yield of the plant. However, for a more accurate interpretation, it is essential to establish the index leaf. There are few published studies about Jatropha with contrasting results. In order to establish the index leaf, in adult plants, the macronutrient levels were evaluated in samples collected in experimental plots, in which doses of nitrogen and phosphorus were applied, in two parts of the floral branches (in the top and in the middle thirds); and in three positions of leaves of the floral branch (between the 1st and 3rd, 6th and 8th, and 13th and 15th leaves below the inflorescence). The location of the leaf on the plant significantly affects nutrient contents. Nitrogen, phosphorus, potassium and sulfur tend to have higher concentration in young tissues. Calcium and magnesium showed higher levels in the basal leaves of floral branches. Samples collected in the top third of plants (between the 6th and 15th leaves of the floral branch) are more sensitive to variations of nitrogen and phosphorus fertilization. Therefore, we indicate the 6th to 15th leaves of the top third plants as index leaves estimate nutritional status of Jatropha.
Resumo:
ABSTRACT The objective of this study was to analyze the phenotypic correlation and path analysis of traits related to plant architecture, earliness and grain yield in F2, BC1 and BC2 generations, from crosses between cowpea cultivars BRS Carijó and BR14 Mulato. Most phenotypic correlations of the examined traits were concordant in statistical significance, with approximate values among the examined generations. For the trait seed weight, significant and positive phenotypic correlations were observed in the three generations only for the trait number of secondary branches. The values of the direct effects were in agreement with the values of the phenotypic correlations, which indicate true association by the phenotypic correlation among the traits of grain yield examined. Path analysis indicated that the selection of productive plants will result in early plants and an increased number of secondary branches. In F2, plants with shorter length of the main branch and shorter length of secondary branches can be obtained. The causal model explained 15 to 30% of the total variation in grain weight in relation to the traits examined. The analyses indicated the possibility of selecting plants with a higher and early grain yield, shorter length of primary branches and lower number of nodes, which are important variables for mechanical or semi-mechanical harvesting.
Resumo:
ABSTRACT The objective of the present study was to evaluate the effect of nitrogen doses applied via fertigation and associated with different types of crop establishment fertilization on growth and biomass of radish. The experiment was conducted in a greenhouse of the Academic Unit of Agricultural Engineering, Federal University of Campina Grande, from April to May 2014. Treatments consisted of five doses of nitrogen fertilizer applied by fertigation (0, 0.7, 1.4, 2.1 and 2.8g per pot) and three types of crop establishment fertilization (humus 2:2; NPK and control), arranged in a 5 x 3 factor design with four repetitions. The 15 treatments were arranged in 60 plots. The nitrogen source used in the study was urea, divided in three applications: the first application was carried out eight days after transplanting, the second, on day 15, and the third, on day 22. The crop establishment fertilization significantly influenced the growth variables and plant mass of the radish on day 35 after transplanting. The highest values of the variables (number of leaves, plant height, bulb diameter, leaf area, fresh mass of the aerial part, dry mass of the aerial part and root/aerial part were observed in the treatment with humus on day 35 after transplanting. The dose of 2.8g nitrogen per pot corresponding to 6.22g of urea per plant provided the highest yield for the variable number of leafs, leaf area and root length on day 35 after transplanting.
Resumo:
ABSTRACT Biostimulants are complex substances that promote hormonal balance in plants, favor the genetic potential expression, and enhance growth of shoots and root system. The use of these plant growth promoters in crops can increase quantitatively and qualitatively crop production. Therefore, the aim of this study was to evaluate the effect of a commercial biostimulant on the initial growth of cassava. The experiment was arranged in a 2 x 5 factorial design, corresponding to two cassava cultivars (Cacau-UFV and Coimbra) and five biostimulant concentrations (0, 4, 8, 12 and 16 mL L-1). At 90 days after planting, the characteristics leaf area, plant height, stem diameter, leaf number, total dry matter and dry matter of roots, stems and leaves were evaluated. The biostimulant promoted linear increases in plant height, leaf number, leaf area, total dry matter, dry matter of stems, leaves and roots. The cultivar Cacau-UFV had a higher growth rate than the cultivar Coimbra. The growth promoter stimulated the early growth of the cassava crop.