400 resultados para PLASMODIUM BERGHEI
Resumo:
Eicosanoids affect the immunity of several pathogen/insect models, but their role on the Anopheles gambiae response to Plasmodium is still unknown. Plasmodium berghei-infected mosquitoes were injected with an eicosanoid biosynthesis inhibitor, indomethacin (IN), or a substrate, arachidonic acid (AA), at day 7 or day 12 post-infection (p.i.). Salivary gland invasion was evaluated by sporozoite counts at day 21 p.i. IN promoted infection upon sporozoite release from oocysts, but inhibited infection when sporozoites were still maturing within the oocysts, as observed by a reduction in the number of sporozoites reaching the salivary glands. AA treatment had the opposite effect. We show for the first time that An. gambiae can modulate parasite survival through eicosanoids by exerting an antagonistic or agonistic effect on the parasite, depending on its stage of development.
Resumo:
A rapid decrease in parasitaemia remains the major goal for new antimalarial drugs and thus, in vivo models must provide precise results concerning parasitaemia modulation. Hydroxyethylamine comprise an important group of alkanolamine compounds that exhibit pharmacological properties as proteases inhibitors that has already been proposed as a new class of antimalarial drugs. Herein, it was tested the antimalarial property of new nine different hydroxyethylamine derivatives using the green fluorescent protein (GFP)-expressing Plasmodium bergheistrain. By comparing flow cytometry and microscopic analysis to evaluate parasitaemia recrudescence, it was observed that flow cytometry was a more sensitive methodology. The nine hydroxyethylamine derivatives were obtained by inserting one of the following radical in the para position: H, 4Cl, 4-Br, 4-F, 4-CH3, 4-OCH3, 4-NO2, 4-NH2 and 3-Br. The antimalarial test showed that the compound that received the methyl group (4-CH3) inhibited 70% of parasite growth. Our results suggest that GFP-transfected P. berghei is a useful tool to study the recrudescence of novel antimalarial drugs through parasitaemia examination by flow cytometry. Furthermore, it was demonstrated that the insertion of a methyl group at the para position of the sulfonamide ring appears to be critical for the antimalarial activity of this class of compounds.
Resumo:
Previous studies of subtelomeric regions in Plasmodium berghei led to the identification of subtelomeric repeats (2.3kb long) present in a variable number at many chromosomal ends. Both loss and increase in 2.3kb-repeat copy number are involved in chromosome-size polymorphisms. Subtelomeric losses leading to chromosome-size polymorphisms have been described by several authors in P.falciparum where the structure of subtelomeric regions is not known in detail. We therefore undertook their characterisation, by means of chromosome walking and jumping techniques, starting from the telomere-flanking sequence present in pPftel.1, the P.falciparum telomeric clone described by Vernick and McCutchan (1988). The results indicate that at least 20 (out of 28) chromosomal ends in P.falciparum 3D7 chromosomes share a subtelomeric region, about 40kb long, covering (but not limited to) the Rep20 region. Non repetitive, AT-rich portions flanking the Rep20 region on both sides are also conserved at most chromosomal ends.
Resumo:
Due to the recent advances of atovaquone, a naphthoquinone, through clinical trials as treatment for malarial infection, 19 quinone derivatives with previously reported structures were also evaluated for blood schizonticide activity against the malaria parasite Plasmodium falciparum. These compounds include 2-hydroxy-3-methylamino naphthoquinones (2-9), lapachol (10), nor-lapachol (11), iso-lapachol (12), phthiocol (13) and phenazines (12-20). Their cytotoxicities were also evaluated against human hepatoma and normal monkey kidney cell lines. Compounds 2 and 5 showed the highest activity against P. falciparum chloroquine-resistant blood-stage parasites (clone W2), indicated by their low inhibitory concentration for 50% (IC50) of parasite growth. The therapeutic potential of the active compounds was evaluated according to the selectivity index, which is a ratio of the cytotoxicity minimum lethal dose which eliminates 50% of cells and the in vitro IC50. Naphthoquinones 2 and 5, with activities similar to the reference antimalarial chloroquine, were also active against malaria in mice and suppressed parasitaemia by more than 60% in contrast to compound 11 which was inactive. Based on their in vitro and in vivo activities, compounds 2 and 5 are considered promising molecules for antimalarial treatment and warrant further study.
Resumo:
Levando em conta a comprovada ação preventiva da violeta de genciana quanto à transmissão da doença de Chagas, por transfusão de sangue e, também, possível idêntica eficácia a respeito da toxoplasmose, foi empreendida investigação para verificar se esse corante tem, da mesma forma, a capacidade de evitar a malária decorrente de hemoterapia. Foi investigada a infecção de camundongos pelo Plasmodium berghei. Usando parasitemia, mortalidade e alterações histopatológicas como parâmetros, verificou-se que a violenta de genciana, adicionada ao sangue, nas concentrações de 1/1.000 e 1/4.000, opõe-se efetivamente à ação infectante do protozoário, após permanência em geladeira (4°C) durante 24 horas. Conclui-se que se abre nova perspectiva quanto à profilaxia da malária induzida, em serviços de hemoterapia.
Resumo:
Neste artigo descrevemos a contaminação acidental de uma cepa de malária de roedor (Plasmodium berghei) por um hemoparasita (Eperythrozoon coccoides), levando a alterações importantes no comportamento da malária experimental. A demonstração do parasita foi feita por microscopia óptica e eletrônica e a fonte de contaminação foi detectada em roedores normalmente utilizados na manutenção da cepa, obtidos do mesmo biotério. As medidas disponíveis para o controle deste tipo de infecção são discutidas propondo se a utilização de tetra-ciclina em matrizes e posterior utilização de animais Fl não tratados. Comenta-se a importância deste tipo de contaminação experimental.
Resumo:
Plasmodium parasites degrade host hemoglobin to obtain free amino acids, essential for protein synthesis. During this event, free toxic heme moieties crystallize spontaneously to produce a non-toxic pigment called hemozoin or ß-hematin. In this context, a group of azole antimycotics, clotrimazole (CTZ), ketoconazole (KTZ) and fluconazole (FCZ), were investigated for their abilities to inhibit ß-hematin synthesis (IßHS) and hemoglobin proteolysis (IHbP) in vitro. The ß-hematin synthesis was recorded by spectrophotometry at 405 nm and the hemoglobin proteolysis was determined by SDS-PAGE 12.5%, followed by densitometric analysis. Compounds were also assayed in vivo in a malaria murine model. CTZ and KTZ exhibited the maximal effects inhibiting both biochemical events, showing inhibition of β-hematin synthesis (IC50 values of 12.4 ± 0.9 µM and 14.4 ± 1.4 µM respectively) and inhibition of hemoglobin proteolysis (80.1 ± 2.0% and 55.3 ± 3.6%, respectively). There is a broad correlation to the in vivo results, especially CTZ, which reduced the parasitemia (%P) of infected-mice at 4th day post-infection significantly compared to non-treated controls (12.4 ± 3.0% compared to 26.6 ± 3.7%, p = 0.014) and prolonged the survival days post-infection. The results indicated that the inhibition of the hemoglobin metabolism by the azole antimycotics could be responsible for their antimalarial effect.
Resumo:
Neste trabalho foram estudados exemplares do roedor, Calomys callosus, nascidos em laboratório, a infecções experimentais com quatro parasitos: Plasmodium berghei, Leishmania mexicana amazonensis, Schistosoma mansoni e Hymenolepsis nana. A positividade das infecções foi de 80% para os três primeiros parasitos e 0 para H. nana. C. callosus é um roedor de excelente adaptação em laboratório e de fácil manuseio. Acredita-se que, de acordo com os resultados obtidos neste trabalho, este animal poderia ser um bom modelo experimental de laboratório para certos agentes patogênicos.
Resumo:
The effects ofone non-lethal species ofmalarialparasite, Plasmodium yoelii, and one lethal species, P. berghei, on the mononuclear phagocyte system (MPS) of BALB/c mice were studied. P. yoelii caused a greater and more sustained expansion and activation of the MPS, and the two major populations of spleen phagocytic cells-red pulp and marginal zone macrophages - exhibited a greater increase in numbers in this infection. During the course of P. berghei mataria, the spleen was progressively occupied by haematopoietic tissue and, at the terminal stage of infection, an extensive depletion of lymphocytes and macrophages was apparent. The possibility was suggested that the outcome of mataria may be inftuenced by the particular way the parasite interacts with the MPS.
Resumo:
An electronmicroscopy study of the spleen from mice infected with Plasmodium berghei was carried out to investigate the types ofcells in volved in the removal of parasites from the blood, and the mechanisms by which this occurs. Macrophages, particularly from the red pulp and the marginal zone of the spleen, constituted the most important population of phagocytic cells in the spleen. At the height ofparasitaemia, macrophages in the periphery of the white pulp, especially in the mantle zone of secondary follicles, were also found to participate in phagocytosis, although to a limited extent. Our fingings suggest that phagocytosis of free parasites or parasitized erythrocytes in the spleen is an important mechanism of clearance of parasites from the circulation. Parasites removed from the erythrocytes when these cells cross the interendothelial slits are further phagocytosed by neighbouring macrophages. Evidence is presented suggesting that spleen macrophages may act against the parasite through a process of cytotoxicity.
Resumo:
O estudo foi realizado com o objetivo de avaliar a eventual utilidade de raios gama na profilaxia da malária transmissível por transfusão de sangue, tendo sido, para isso, usados camundongos infectados pelo Plasmodium berghei. Na primeira fase, quando submetemos sangue deles retirado a 2.500 e 5.000rad, com associação ou não de metronidazol, não obtivemos sucesso, já que todos os animais antes sem a parasitose apresentaram parasitemia e morreram após inoculação do sangue irradiado. Porém, ocorreu êxito parcial na segunda fase, ao serem empregados 10.000 e 15.000rad, porquanto 20% e 40% dos roedores, respectivamente, embora tenham ficado infectados, sobreviveram, com posterior negativação quanto à presença do P. berghei.
Resumo:
Estudou-se o efeito da dieta láctea, por um período de 150 dias em camundongos infectados com diferentes números das formas sangüíneas de Plasmodium berghei, e observou-se o desenvolvimento da imunidade humoral nestes animais pela dosagem das imunoglobulinas das classes IgG e IgM no soro, usando o teste de imunofluorescência indireta. Os resultados indicam que a administração do leite, como único alimento em camundongos, protege-os cotnra infecção malárica fatal, independentemente do número de parasitas inoculados. Os animais desenvolveram altos níveis de anticorpos IgG, os quais persistiram no soro por longo período de tempo. Contudo, os anticorpos IgM somente foram detectáveis no soro durante as primeiras duas semanas de infecção. O P. berghei continua presente na circulação periférica, após dois meses de infecção, uma vez que o sangue destes animasi inoculados em camundongos mantidos em dieta norma, produziu infecção fatal nos recipientes. No entanto, ao exame microscópico não foi possível detectar o parasita da malária no sangue periférico destes animais. O protozoário esteve presente no baço e fígado dos camundongos durante todo o tempo de duração da pesquisa. A presença contínua do P. berghei nestes animais, em nível de infecção subclínica, ofereceu ao hospedeiro o desenvolvimento de uma imunidade sólida contra subseqüente infecção. Esta imunidade adquirida esteve presente, nestes animais, até cinco meses após a infecção.
Resumo:
Crude ethanolic extracts (CEEs) from two species of Cucurbitaceae, Cucurbita maxima and Momordica charantia (commonly called "abóbora moranga" and melão de São Caetano", respectively) were assayed for antimalarial activity by the 4-d suppressive test. The CEE of dry C. maxima seeds showed strong antimalarial activity following oral administration (259 and 500 mg/kg), reducing by 50% the levels of parasistemia in Plasmodium berghey-infected mice. Treatment of normal animals with 500 mg/Kg of the extract three days before intravenous injection of P. berghei caused a significant 30% reduction in parasitemic levels. No effect was observed when the animals were treated with the CEE only on the day of inoculation. Oral administration of the CEE of dry M. charantia leaves adminstered orally was ineffective up to 500 mg/Kg in lowering the parasitemic levels of malarious mice.
Resumo:
The biological literature contains many examples of mutual influences between different species of parasites, especially with respect to concomitant helminth infections. Several situations are known in wich the association of infection by Shistosoma mansoni with other pathogens in the same host results in a type of disease wich differs from the simple summation of the individual effects of each infection. The present study concerns concomitant infections involving S. mansoni and enterobacteriaceae; S. mansoni and other helmints such as Ascaris lumbricoides, Ancylostomids, Toxocara canis and species of the genus Hymenolepis; S. mansoni and different protozoa such as Trypanosoma cruzi, T. brucei, Toxoplasma gondii and Plasmodium berghei. The interaction between hepatitis B virus and S. mansoni, leading to prolonged viremia and worsening of liver damage, is also discussed. The paper also treats the simultaneous occurrence of schistosomiasis and other aggravating factors such as malnutrition and neoplasias wich may alter the host's response to the trematode.
Resumo:
Previous studies were focussed on the attempt to correlate observable variations in the size of Plasmodium berghei chromosomes with the loss of ability to produce viable gametocytes. A temporal coincidence between the appearance of a subtelomeric deletion on P. berghei chromosome 5 and the loss of the ability to produce viable gametocytes was observed in a clone (HPE) directly derived from the high gametocyte-producer clone 8417 during mechanical passages. Interestingly enough, three P. berghei sexual-specific genes have already been mapped on internal fragments of this chromosome. A novel gene, clone 150, isolated from a genomic library of clone 8417 using a probe enriched for sexual-specific transcripts, maps on chromosome 5 within 100kb from the telomere. Subtelomeric deletions of chromosome 5 affecting two non-producer clones involve part of the transcribed region of this gene.