39 resultados para Noradrenaline Uptake
Resumo:
The objective of this work was to evaluate the response of rangpur lime (Citrus limonia) to arbuscular mycorrhiza (Glomus intraradices), under P levels ranging from low to excessive. Plants were grown in three levels of soluble P (25, 200 and 1,000 mg kg-1), either inoculated with Glomus intraradices or left noninoculated, evaluated at 30, 60, 90, 120 and 150 days after transplanting (DAT). Total dry weight, shoot P concentration and specific P uptake by roots increased in mycorrhizal plants with the doses of 25 and 200 mg kg-1 P at 90 DAT. With 1,000 mg kg-1 P, mycorrhizal plants had a transient growth depression at 90 and 120 DAT, and nonmycorrhizal effects on P uptake at any harvesting period. Root colonization and total external mycelium correlated positively with shoot P concentration and total dry weight at the two lowest P levels. Although the highest P level decreased root colonization, it did not affect total external mycelium to the same extent. As a result, a P availability imbalance affected negatively the mycorrhizal symbiosis and, consequently, the plant growth.
Resumo:
The objective of this study was to evaluate potato plant growth and macronutrient uptake, as affected by soil tillage methods, in sprinkle and drip irrigated experiments. Eight treatments were set: T1, no tillage, except for furrowing before planting; T2, one subsoiling (SS); T3, twice rotary hoeing (RH); T4, one disc plowing (DP) + twice disc harrow leveling (DL); T5, 1DP + 2DL + 1RH; T6, 1DP + 2DL + 2RH; T7, 1SS + T6; T8, one moldboard plowing (MP) + 2DL. Treatments were arranged in a randomized block design with four replications. In both irrigation systems, plants presented higher emergence velocity index (EVI), when the soil was not tillaged, and the EVI was inversely related to the maximum tuber dry mass production. In both experiments, a functional direct relationship was found between the leaf area index and maximum tuber dry mass yield. The growth of plant organs (tuber, leaf, stem and root) and the macronutrient (N, P, K, Ca and Mg) contents in potato plant responded positively to a deeper soil revolving caused by plowing, especially with moldboard plow.
Resumo:
Annonaceae seeds are known by presenting dormancy mechanisms, whose reports ranging from coating impermeable to the physiological dormancy. By this way, the present study aimed to evaluate water uptake in Annona diversifolia Saff and Annona purpurea Moc & Sessé ex Dunal seeds. For this study, seeds were placed under immersion in distilled water, and used four replicates of 25 seeds of each species, which were weighed during the 480 hours that were immersed. To determine the place of purchase of water, Annona diversifolia seeds were sealed with paraffin at different locations. Based on the results, seeds from both species reached the phases I and II of water uptake, which indicates they are not hard; however, germination (Phase III) was not reached. Annona diversifolia seeds completed Phase I with, 50h and Annona purpurea with 70h from imbibitions begin, which shows that even slowly, water is acquire.
Resumo:
Objective: To analyze standardized uptake values (SUVs) using three different tube current intensities for attenuation correction on 18FNaF PET/CT scans. Materials and Methods: A total of 254 18F-NaF PET/CT studies were analyzed using 10, 20 and 30 mAs. The SUVs were calculated in volumes of interest (VOIs) drawn on three skeletal regions, namely, right proximal humeral diaphysis (RH), right proximal femoral diaphysis (RF), and first lumbar vertebra (LV1) in a total of 712 VOIs. The analyses covered 675 regions classified as normal (236 RH, 232 RF, and 207 LV1). Results: Mean SUV for each skeletal region was 3.8, 5.4 and 14.4 for RH, RF, and LV1, respectively. As the studies were grouped according to mAs value, the mean SUV values were 3.8, 3.9 and 3.7 for 10, 20 and 30 mAs, respectively, in the RH region; 5.4, 5.5 and 5.4 for 10, 20 and 30 mAs, respectively, in the RF region; 13.8, 14.9 and 14.5 for 10, 20 and 30 mAs, respectively, in the LV1 region. Conclusion: The three tube current values yielded similar results for SUV calculation.
Resumo:
Abstract Objective: To assess the cutoff values established by ROC curves to classify18F-NaF uptake as normal or malignant. Materials and Methods: PET/CT images were acquired 1 hour after administration of 185 MBq of18F-NaF. Volumes of interest (VOIs) were drawn on three regions of the skeleton as follows: proximal right humerus diaphysis (HD), proximal right femoral diaphysis (FD) and first vertebral body (VB1), in a total of 254 patients, totalling 762 VOIs. The uptake in the VOIs was classified as normal or malignant on the basis of the radiopharmaceutical distribution pattern and of the CT images. A total of 675 volumes were classified as normal and 52 were classified as malignant. Thirty-five VOIs classified as indeterminate or nonmalignant lesions were excluded from analysis. The standardized uptake value (SUV) measured on the VOIs were plotted on an ROC curve for each one of the three regions. The area under the ROC (AUC) as well as the best cutoff SUVs to classify the VOIs were calculated. The best cutoff values were established as the ones with higher result of the sum of sensitivity and specificity. Results: The AUCs were 0.933, 0.889 and 0.975 for UD, FD and VB1, respectively. The best SUV cutoffs were 9.0 (sensitivity: 73%; specificity: 99%), 8.4 (sensitivity: 79%; specificity: 94%) and 21.0 (sensitivity: 93%; specificity: 95%) for UD, FD and VB1, respectively. Conclusion: The best cutoff value varies according to bone region of analysis and it is not possible to establish one value for the whole body.
Resumo:
Being mercury one of the most toxic heavy metals present in the environment, it is of major concern to develop cleanup technologies to remove it from wastewater and recover mercury polluted ecosystems. In this context, we study the potential of some microporous titanosilicates and zirconosilicates for taking up Hg2+ from aqueous solutions. These materials have unique chemical and physical properties, and here we are able to confirm that they readily remove Hg2+ from aqueous solutions. Moreover, the presence of the competitive Mg2+ and Na+, which are some of the dominant cations in natural waters, does not reduce the uptake capacity of some of these materials. Thus, several inorganic materials reported here may have important environmental applications, efficiently removing Hg2+ from aqueous solutions.
Resumo:
This paper proposes a methodology to predict benzene uptake rate in ambient air, using passive samplers with Tenax TA. Variations in the uptake rate were found to occur as a function of the sampling time; and were greater at the beginning of sampling. An empirical model was obtained and values for uptake rate agree with literature. Concentration prediction errors can be minimized by using sampling times of 4 to 14 days, thus avoiding the influence of excessive uptake rates in the initial days and the influence of back diffusion at the end of the sampling period.
Resumo:
The present paper focuses on improving chromium (III) uptake capacity of sugarcane bagasse through its chemical modification with citric acid and/or sodium hydroxide. The chemical modifications were confirmed by infrared spectroscopy, with an evident peak observed at 1730 cm-1, attributed to carbonyl groups. Equilibrium was reached after 24 h, and the kinetics followed the pseudo-second-order model. The highest chromium (III) maximum adsorption capacity (MAC) value was found when using sugarcane bagasse modified with sodium hydroxide and citric acid (58.00 mg g-1) giving a MAC value about three times greater (20.34 mg g-1) than for raw sugarcane bagasse.
Resumo:
Two soybean (Glycine max) cultivars were used in this study, Ocepar 4, rated as moderately resistant to Meloidogyne incognita race 3 but susceptible to M. javanica, and 'BR 16', susceptible to both nematodes. The effect of nematodes infection on the uptake and transport of N, P and Ca to the shoot was studied in plants growing in a split root system. The upper half was inoculated with 0, 3,000, 9,000 or 27,000 eggs/plant while the lower half received 15N, 32P or 45Ca. Infected plants showed an increase of root but a decrease of shoot mass with increasing inoculum levels. In general, total endogenous nutrients increased in the roots and tended to decrease in the shoots with increasing inoculum levels. When concentrations were calculated, there was an increase in the three nutrients in the roots, and an increase of Ca but no significant variation of N and P was observed in the shoots. The total amount of 15N in the roots increased at the highest inoculum levels but 32P and 45Ca decreased. In the shoots there was a reduction of 32P and 45Ca. The specific concentrations of the labelled nutrients (abundance or radioactivity/tissue mass) also showed a decrease of 32P and 45Ca in the shoots and roots of infected plants and an increase of 15N in the shoots. Considering that overall nutrient concentrations reflect cumulative nutrient uptake and the data from labelled elements gave information at a specific moment of the infection, thus nematodes do interfere with nutrient uptake and translocation.
Resumo:
(Comparative uptake and metabolism of 2-[14C]-2,4-dichlorophenoxyacetic acid in callus cultures of monocot (Dioscorea spp.) and dicot (Nicotiana tabacum L.) plants). The uptake and metabolism of 2-[14C]-2,4-dichlorophenoxyacetic acid (2,4-D) were investigated in leaf calluses of Nicotiana tabacum, tuber calluses of Dioscorea opposita and calluses derived from zygotic embryos, leaves and petioles of Dioscorea composita. Striking similarities were evident in the patterns of 2,4-D metabolites and their chemical characteristics in the three callus types of D. composita compared, but significant differences were detected among the patterns of rnetabolites in the three species studied. Preliminary investigations on the stability of various metabolites (separated using TLC) by hydrolysis showed that sugar esters appeared to be the major metabolites in tobacco whilst in yams (D. opposita) glycosides were shown to be the main ones, which indicated a similarity between plants of Gramineae and Dioscoreaceae in terms of 2,4-D metabolism. Release of 2,4-D from tobacco callus cells upon their transfer to 2,4-D-free medium was detected and the implications of this are discussed in relation to the cultural conditions necessary to induce morphogenesis in vitro.
Resumo:
We investigated the effectiveness of Nitroxin inoculation on lead (Pb) and nutrient uptakes by little seed canary grass. The factors tested included inoculation (or not) with Nitroxin and different soil concentrations of Pb (0, 200, 400 and 800mgPbkg-1 soil). Increasing soil concentrations of Pb decreased stem, leaf and root dry weights. Shoot phosphorus concentrations increased in parallel with increasing soil Pb concentrations. Nitroxin inoculation did not alter the phosphorus concentration of the roots. The Pb translocation factor was >1 in inoculated treatments in the Pb soil concentration range of 200 to 400mgkg-1; the translocation factor for 800mgPbkg‑1 with no inoculation of Nitroxin was, however, <1. Our results indicated that the Pb bioaccumulation factor for little seed canary grass was <1, indicating that it is a Pb excluding plant.
Resumo:
Fencamfamine (FCF) is a central stimulant that facilitates central dopaminergic transmission through inhibition of dopamine uptake and enhanced release of the transmitter. We evaluated the changes in the inhibition of uptake and the release of striatal [3H]-dopamine at 9:00 and 21:00 h, times corresponding to maximal and minimal behavioral responses to FCF, respectively. Adult male Wistar rats (200-250 g) maintained on a 12-h light/12-h dark cycle (lights on at 7:00 h) were used. In the behavioral experiments the rats (N = 8 for each group) received FCF (3.5 mg/kg, ip) or saline at 9:00 or 21:00 h. Fifteen minutes after treatment the duration of activity (sniffing, rearing and locomotion) was recorded for 120 min. The basal motor activity was higher (28.6 ± 4.2 vs 8.4 ± 3.5 s) after saline administration at 21:00 h than at 9:00 h. FCF at a single dose significantly enhanced the basal motor activity (38.3 ± 4.5 vs 8.4 ± 3.5 s) and increased the duration of exploratory activity (38.3 ± 4.5 vs 32.1 ± 4.6 s) during the light, but not the dark phase. Two other groups of rats (N = 6 for each group) were decapitated at 9:00 and 21:00 h and striata were dissected for dopamine uptake and release assays. The inhibition of uptake and release of [3H]-dopamine were higher at 9:00 than at 21:00 h, suggesting that uptake inhibition and the release properties of FCF undergo daily variation. These data suggest that the circadian time-dependent effects of FCF might be related to a higher susceptibility of dopamine presynaptic terminals to the action of FCF during the light phase which corresponds to the rats' resting period
Resumo:
Different levels of insulin sensitivity have been described in several animal models of obesity as well as in humans. Monosodium glutamate (MSG)-obese mice were considered not to be insulin resistant from data obtained in oral glucose tolerance tests. To reevaluate insulin resistance by the intravenous glucose tolerance test (IVGTT) and by the clamp technique, newborn male Wistar rats (N = 20) were injected 5 times, every other day, with 4 g/kg MSG (N = 10) or saline (control; N = 10) during the first 10 days of age. At 3 months, the IVGTT was performed by injecting glucose (0.75 g/kg) through the jugular vein into freely moving rats. During euglycemic clamping plasma insulin levels were increased by infusing 3 mU . kg-1 . min-1 of regular insulin until a steady-state plateau was achieved. The basal blood glucose concentration did not differ between the two experimental groups. After the glucose load, increased values of glycemia (P<0.001) in MSG-obese rats occurred at minute 4 and from minute 16 to minute 32. These results indicate impaired glucose tolerance. Basal plasma insulin levels were 39.9 ± 4 µU/ml in control and 66.4 ± 5.3 µU/ml in MSG-obese rats. The mean post-glucose area increase of insulin was 111% higher in MSG-obese than in control rats. When insulinemia was clamped at 102 or 133 µU/ml in control and MSG rats, respectively, the corresponding glucose infusion rate necessary to maintain euglycemia was 17.3 ± 0.8 mg . kg-1 . min-1 for control rats while 2.1 ± 0.3 mg . kg-1 . min-1 was sufficient for MSG-obese rats. The 2-h integrated area for total glucose metabolized, in mg . min . dl-1, was 13.7 ± 2.3 vs 3.3 ± 0.5 for control and MSG rats, respectively. These data demonstrate that MSG-obese rats develop insulin resistance to peripheral glucose uptake
Resumo:
Nitric oxide (NO·) has been identified as a principal regulatory molecule of the immune system and the major cytotoxic mediator of activated immune cells. NO· can also react rapidly with a variety of biological species, particularly with the superoxide radical anion O2·- at almost diffusion-limited rates to form peroxynitrite anion (ONOO-). ONOO- and its proton-catalyzed decomposition products are capable of oxidizing a great diversity of biomolecules and can act as a source of toxic hydroxyl radicals. As a consequence, a strategy for the development of molecules with potential trypanocidal activities could be developed to increase the concentration of nitric oxide in the parasites through NO·-releasing compounds. In this way, the rate of formation of peroxynitrite from NO· and O2·- would be faster than the rate of dismutation of superoxide radicals by superoxide dismutases which constitute the primary antioxidant enzymatic defense system in trypanosomes. The adenosine transport systems of parasitic protozoa, which are also in certain cases implicated in the selective uptake of active drugs such as melarsoprol or pentamidine, could be exploited to specifically target these NO·-releasing compounds inside the parasites. In this work, we present the synthesis, characterization and biological evaluation of a series of molecules that contain both a group which would specifically target these drugs inside the parasites via the purine transporter, and an NO·-donor group that would exert a specific pharmacological effect by increasing NO level, and thus the peroxynitrite concentration inside the parasite.
Resumo:
We examined the effect of crotoxin, the neurotoxic complex from the venom of the South American rattlesnake Crotalus durissus terrificus, on the uptake of ³H-choline in minces of smooth muscle myenteric plexus from guinea pig ileum. In the concentration range used (0.03-1 µM) and up to 10 min of treatment, crotoxin decreased ³H-choline uptake by 50-75% compared to control. This inhibition was time dependent and did not seem to be associated with the disruption of the neuronal membrane, because at least for the first 20 min of tissue exposure to the toxin (up to 1 µM) the levels of lactate dehydrogenase (LDH) released into the supernatant were similar to those of controls. Higher concentrations of crotoxin or more extensive incubation times with this toxin resulted in elevation of LDH activity detected in the assay supernatant. The inhibitory effect of crotoxin on ³H-choline uptake seems to be associated with its phospholipase activity since the equimolar substitution of Sr2+ for Ca2+ in the incubation medium or the modification of the toxin with p-bromophenacyl bromide substantially decreased this effect. Our results show that crotoxin inhibits ³H-choline uptake with high affinity (EC25 = 10 ± 5 nM). We suggest that this inhibition could explain, at least in part, the blocking effect of crotoxin on neurotransmission.