28 resultados para Neural Network Assembly Memory Model


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this work was to evaluate sampling density on the prediction accuracy of soil orders, with high spatial resolution, in a viticultural zone of Serra Gaúcha, Southern Brazil. A digital elevation model (DEM), a cartographic base, a conventional soil map, and the Idrisi software were used. Seven predictor variables were calculated and read along with soil classes in randomly distributed points, with sampling densities of 0.5, 1, 1.5, 2, and 4 points per hectare. Data were used to train a decision tree (Gini) and three artificial neural networks: adaptive resonance theory, fuzzy ARTMap; self‑organizing map, SOM; and multi‑layer perceptron, MLP. Estimated maps were compared with the conventional soil map to calculate omission and commission errors, overall accuracy, and quantity and allocation disagreement. The decision tree was less sensitive to sampling density and had the highest accuracy and consistence. The SOM was the less sensitive and most consistent network. The MLP had a critical minimum and showed high inconsistency, whereas fuzzy ARTMap was more sensitive and less accurate. Results indicate that sampling densities used in conventional soil surveys can serve as a reference to predict soil orders in Serra Gaúcha.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multivariate models were developed using Artificial Neural Network (ANN) and Least Square - Support Vector Machines (LS-SVM) for estimating lignin siringyl/guaiacyl ratio and the contents of cellulose, hemicelluloses and lignin in eucalyptus wood by pyrolysis associated to gaseous chromatography and mass spectrometry (Py-GC/MS). The results obtained by two calibration methods were in agreement with those of reference methods. However a comparison indicated that the LS-SVM model presented better predictive capacity for the cellulose and lignin contents, while the ANN model presented was more adequate for estimating the hemicelluloses content and lignin siringyl/guaiacyl ratio.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Methane combustion was studied by the Westbrook and Dryer model. This well-established simplified mechanism is very useful in combustion science, for computational effort can be notably reduced. In the inversion procedure to be studied, rate constants are obtained from [CO] concentration data. However, when inherent experimental errors in chemical concentrations are considered, an ill-conditioned inverse problem must be solved for which appropriate mathematical algorithms are needed. A recurrent neural network was chosen due to its numerical stability and robustness. The proposed methodology was compared against Simplex and Levenberg-Marquardt, the most used methods for optimization problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study evaluates the application of an intelligent hybrid system for time-series forecasting of atmospheric pollutant concentration levels. The proposed method consists of an artificial neural network combined with a particle swarm optimization algorithm. The method not only searches relevant time lags for the correct characterization of the time series, but also determines the best neural network architecture. An experimental analysis is performed using four real time series and the results are shown in terms of six performance measures. The experimental results demonstrate that the proposed methodology achieves a fair prediction of the presented pollutant time series by using compact networks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The quantitative structure property relationship (QSPR) for the boiling point (Tb) of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) was investigated. The molecular distance-edge vector (MDEV) index was used as the structural descriptor. The quantitative relationship between the MDEV index and Tb was modeled by using multivariate linear regression (MLR) and artificial neural network (ANN), respectively. Leave-one-out cross validation and external validation were carried out to assess the prediction performance of the models developed. For the MLR method, the prediction root mean square relative error (RMSRE) of leave-one-out cross validation and external validation was 1.77 and 1.23, respectively. For the ANN method, the prediction RMSRE of leave-one-out cross validation and external validation was 1.65 and 1.16, respectively. A quantitative relationship between the MDEV index and Tb of PCDD/Fs was demonstrated. Both MLR and ANN are practicable for modeling this relationship. The MLR model and ANN model developed can be used to predict the Tb of PCDD/Fs. Thus, the Tb of each PCDD/F was predicted by the developed models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Precision irrigation seeks to establish strategies which achieve an efficient ratio between the volume of water used (reduction in input) and the productivity obtained (increase in production). There are several studies in the literature on strategies for achieving this efficiency, such as those dealing with the method of volumetric water balance (VWB). However, it is also of great practical and economic interest to set up versatile implementations of irrigation strategies that: (i) maintain the performance obtained with other implementations, (ii) rely on few computational resources, (iii) adapt well to field conditions, and (iv) allow easy modification of the irrigation strategy. In this study, such characteristics are achieved when using an Artificial Neural Network (ANN) to determine the period of irrigation for a watermelon crop in the Irrigation Perimeter of the Lower Acaraú, in the state of Ceará, Brazil. The Volumetric Water Balance was taken as the standard for comparing the management carried out with the proposed implementation of ANN. The statistical analysis demonstrates the effectiveness of the proposed management, which is able to replace VWB as a strategy in automation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Non-linear functional representation of the aerodynamic response provides a convenient mathematical model for motion-induced unsteady transonic aerodynamic loads response, that accounts for both complex non-linearities and time-history effects. A recent development, based on functional approximation theory, has established a novel functional form; namely, the multi-layer functional. For a large class of non-linear dynamic systems, such multi-layer functional representations can be realised via finite impulse response (FIR) neural networks. Identification of an appropriate FIR neural network model is facilitated by means of a supervised training process in which a limited sample of system input-output data sets is presented to the temporal neural network. The present work describes a procedure for the systematic identification of parameterised neural network models of motion-induced unsteady transonic aerodynamic loads response. The training process is based on a conventional genetic algorithm to optimise the network architecture, combined with a simplified random search algorithm to update weight and bias values. Application of the scheme to representative transonic aerodynamic loads response data for a bidimensional airfoil executing finite-amplitude motion in transonic flow is used to demonstrate the feasibility of the approach. The approach is shown to furnish a satisfactory generalisation property to different motion histories over a range of Mach numbers in the transonic regime.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article is a transcription of an electronic symposium in which active researchers were invited by the Brazilian Society of Neuroscience and Behavior (SBNeC) to discuss the advances of the last decade in the neurobiology of emotion. Four basic questions were debated: 1) What are the most critical issues/questions in the neurobiology of emotion? 2) What do we know for certain about brain processes involved in emotion and what is controversial? 3) What kinds of research are needed to resolve these controversial issues? 4) What is the relationship between learning, memory and emotion? The focus was on the existence of different neural systems for different emotions and the nature of the neural coding for the emotional states. Is emotion the result of the interaction of different brain regions such as the amygdala, the nucleus accumbens, or the periaqueductal gray matter or is it an emergent property of the whole brain neural network? The relationship between unlearned and learned emotions was also discussed. Are the circuits of the former the underpinnings of the latter? It was pointed out that much of what we know about emotions refers to aversively motivated behaviors, like fear and anxiety. Appetitive emotions should attract much interest in the future. The learning and memory relationship with emotions was also discussed in terms of conditioned and unconditioned stimuli, innate and learned fear, contextual cues inducing emotional states, implicit memory and the property of using this term for animal memories. In a general way it could be said that learning modifies the neural circuits through which emotional responses are expressed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

According to the working memory model, the phonological loop is the component of working memory specialized in processing and manipulating limited amounts of speech-based information. The Children's Test of Nonword Repetition (CNRep) is a suitable measure of phonological short-term memory for English-speaking children, which was validated by the Brazilian Children's Test of Pseudoword Repetition (BCPR) as a Portuguese-language version. The objectives of the present study were: i) to investigate developmental aspects of the phonological memory processing by error analysis in the nonword repetition task, and ii) to examine phoneme (substitution, omission and addition) and order (migration) errors made in the BCPR by 180 normal Brazilian children of both sexes aged 4-10, from preschool to 4th grade. The dominant error was substitution [F(3,525) = 180.47; P < 0.0001]. The performance was age-related [F(4,175) = 14.53; P < 0.0001]. The length effect, i.e., more errors in long than in short items, was observed [F(3,519) = 108.36; P < 0.0001]. In 5-syllable pseudowords, errors occurred mainly in the middle of the stimuli, before the syllabic stress [F(4,16) = 6.03; P = 0.003]; substitutions appeared more at the end of the stimuli, after the stress [F(12,48) = 2.27; P = 0.02]. In conclusion, the BCPR error analysis supports the idea that phonological loop capacity is relatively constant during development, although school learning increases the efficiency of this system. Moreover, there are indications that long-term memory contributes to holding memory trace. The findings were discussed in terms of distinctiveness, clustering and redintegration hypotheses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present study, we modeled a reaching task as a two-link mechanism. The upper arm and forearm motion trajectories during vertical arm movements were estimated from the measured angular accelerations with dual-axis accelerometers. A data set of reaching synergies from able-bodied individuals was used to train a radial basis function artificial neural network with upper arm/forearm tangential angular accelerations. The trained radial basis function artificial neural network for the specific movements predicted forearm motion from new upper arm trajectories with high correlation (mean, 0.9149-0.941). For all other movements, prediction was low (range, 0.0316-0.8302). Results suggest that the proposed algorithm is successful in generalization over similar motions and subjects. Such networks may be used as a high-level controller that could predict forearm kinematics from voluntary movements of the upper arm. This methodology is suitable for restoring the upper limb functions of individuals with motor disabilities of the forearm, but not of the upper arm. The developed control paradigm is applicable to upper-limb orthotic systems employing functional electrical stimulation. The proposed approach is of great significance particularly for humans with spinal cord injuries in a free-living environment. The implication of a measurement system with dual-axis accelerometers, developed for this study, is further seen in the evaluation of movement during the course of rehabilitation. For this purpose, training-related changes in synergies apparent from movement kinematics during rehabilitation would characterize the extent and the course of recovery. As such, a simple system using this methodology is of particular importance for stroke patients. The results underlie the important issue of upper-limb coordination.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of the present study was to develop a classifier able to discriminate between healthy controls and dyspeptic patients by analysis of their electrogastrograms. Fifty-six electrogastrograms were analyzed, corresponding to 42 dyspeptic patients and 14 healthy controls. The original signals were subsampled, filtered and divided into the pre-, post-, and prandial stages. A time-frequency transformation based on wavelets was used to extract the signal characteristics, and a special selection procedure based on correlation was used to reduce their number. The analysis was carried out by evaluating different neural network structures to classify the wavelet coefficients into two groups (healthy subjects and dyspeptic patients). The optimization process of the classifier led to a linear model. A dimension reduction that resulted in only 25% of uncorrelated electrogastrogram characteristics gave 24 inputs for the classifier. The prandial stage gave the most significant results. Under these conditions, the classifier achieved 78.6% sensitivity, 92.9% specificity, and an error of 17.9 ± 6% (with a 95% confidence level). These data show that it is possible to establish significant differences between patients and normal controls when time-frequency characteristics are extracted from an electrogastrogram, with an adequate component reduction, outperforming the results obtained with classical Fourier analysis. These findings can contribute to increasing our understanding of the pathophysiological mechanisms involved in functional dyspepsia and perhaps to improving the pharmacological treatment of functional dyspeptic patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, water uptake by poultry carcasses during cooling by water immersion was modeled using artificial neural networks. Data from twenty-five independent variables and the final mass of the carcass were collected in an industrial plant to train and validate the model. Different network structures with one hidden layer were tested, and the Downhill Simplex method was used to optimize the synaptic weights. In order to accelerate the optimization calculus, Principal Component Analysis (PCA) was used to preprocess the input data. The obtained results were: i) PCA reduced the number of input variables from twenty-five to ten; ii) the neural network structure 4-6-1 was the one with the best result; iii) PCA gave the following order of importance: parameters of mass transfer, heat transfer, and initial characteristics of the carcass. The main contributions of this work were to provide an accurate model for predicting the final content of water in the carcasses and a better understanding of the variables involved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to predict by means of Artificial Neural Network (ANN), multilayer perceptrons, the texture attributes of light cheesecurds perceived by trained judges based on instrumental texture measurements. Inputs to the network were the instrumental texture measurements of light cheesecurd (imitative and fundamental parameters). Output variables were the sensory attributes consistency and spreadability. Nine light cheesecurd formulations composed of different combinations of fat and water were evaluated. The measurements obtained by the instrumental and sensory analyses of these formulations constituted the data set used for training and validation of the network. Network training was performed using a back-propagation algorithm. The network architecture selected was composed of 8-3-9-2 neurons in its layers, which quickly and accurately predicted the sensory texture attributes studied, showing a high correlation between the predicted and experimental values for the validation data set and excellent generalization ability, with a validation RMSE of 0.0506.