86 resultados para Liquid-chromatographic Determination
Resumo:
A simple liquid chromatographic method was optimized for the quantitative determination of terbinafine in pharmaceutical hydroalcoholic solutions and tablets, and was also employed for a tablet dissolution test. The analysis was carried out using a RP-C18 (250 mm × 4.6 mm, 5 μm) Vertical® column, UV-Vis detection at 254 nm, and a methanol-water (95:5, v/v) mobile phase at a flow-rate of 1.2 mL min-1. Method validation investigated parameters such as linearity, precision, accuracy, robustness and specificity, which gave results within the acceptable range. The tablets dissolution was quite fast: 80% of the drug was dissolved within 15 min.
Resumo:
A simple and rapid ultra-performance liquid chromatographic method for determination of oseltamivir in capsules was developed and validated. The mobile phase consisted of 5 mmol/L triethylammonium buffer (pH 3.0) and acetonitrile (70:30, v/v). Separation was performed in a Hypersil Gold® column, with octylsilil as stationary phase (100 x 2.1 mm, p.d. 1.9 µm). Chromatography run time was 1.2 min. The method presented adequate specificity, linearity, precision, ruggedness and accuracy and was adequate for determination of oseltamivir in capsules.
Resumo:
A high performance liquid chromatographic-diode array detection method for the determination of busulfan in plasma was developed and validated. Sample preparation consisted of protein precipitation followed by derivatization with sodium diethyldithiocarbamate and liquid-liquid extraction with methyl-tert-butyl ether. Chromatograms were monitored at 277 nm. Separation was carried out on a Lichrospher RP 18 column (5 µm, 250 x 4 mm). The mobile phase consisted of water and acetonitrile (20:80, v/v). The method presented adequate specificity, linearity, precision and accuracy and allowed reliable determination of busulfan in clinical plasma samples, being applied to three patients submitted to bone marrow transplantation.
Resumo:
Furosemide (40mg) was administered to 20 street dogs, 10 males and 10 females, in two different pharmaceutical forms: (1) compressed furosemide 40mg formulated at the Federal University of Pernambuco (UFPE-tablet), and (2) a commercial formulation with equal bioequivalence produced by the Laboratory for Pharmaceutical Technology of Pernambuco State (LAFEPE), the LAFEPE-furosemide. The study aimed to evaluate the kinetics of dissolution of the UFPE-tablet in order to analyze the behavior of bioavailability of the best formulation for veterinary use. The plasmatic concentrations of furosemide for the determination of parameters of pharmacological kinetics were analyzed by high-performance liquid chromatographic method (HPLC). The in vitro study accomplished through physiochemical analyses demonstrated that the formulas of the furosemide tablets attained the pharmaceutical requirements in agreement with USP 23 and the Brazilian Pharmacopoeia. The evaluation accomplished in dogs with UFPE-tablets given in only dose demonstrated uniformity in blood levels indicating stability in maintenance of the pharmaceutical formulation and efficiency in absorption of the active compound. These values are not significantly different in relation to the 5% confidence limit. Regarding maximum concentration (Tmax) time and global bioavaibility assessed by AUC means, there were no considerable differences as well. UFPE-furosemide displayed 743.492µg/mL.h as AUC average value whereas LAFEPE-furosemide had an average of 537.284µg/mL.h.
Resumo:
Analysis of diazepam (DZP) and its active metabolite nordiazepam (NDZP) in plasma is commonly performed in clinical medicine to ensure proper therapeutic effects while minimizing the incidence of toxicity. This study aimed to optimize analytical parameters and compare two pre-treatment techniques, liquid-liquid (LLE) and solid phase extraction (SPE), as well as liquid chromatographic conditions to analyze simultaneously DZP and NDZP in plasma from 20 patients treated with a daily dose of 10 mg. Both techniques showed to be well in line with the international criteria for analytical validation, which permitted to quantify DZP (66.2 - 1148.6 ng mL-1) and NDZP (138.5 - 808.6 ng mL -1) in all samples. The correlation coefficients between SPE and LLE were respectively 0.9729 for DZP and 0.9643 for NDZP.
Resumo:
A new solid phase microextraction (SPME) system, known as in-tube SPME, was recently developed using an open tubular fused-silica capilary column, instead of an SPME fiber, as the SPME device. On-line in-tube SPME is usually used in combination with high performance liquid chromatography. Drugs in biological samples are directly extracted and concentrated in the stationary phase of capillary columns by repeated draw/eject cycles of sample solution, and then directly transferred to the liquid chromatographic column. In-tube SPME is suitable for automation. Automated sample handling procedures not only shorten the total analysis time, but also usually provide better accuracy and precision relative to manual techniques. In-tube SPME has been demonstrated to be a very effective and highly sensitive technique to determine drugs in biological samples for various purposes such as therapeutic drug monitoring, clinical toxicology, bioavailability and pharmacokinetics.
Resumo:
The use of antioxidants either to prevent or retard food's lipids oxidation was approved after inquires that verified their security within a daily intake limit. In this study, the methodology was developed and validated for the analysis of synthetic antioxidants: propylgallate (PG), tert-butylhydroquinone (TBHQ), butylhydroxyanisole (BHA), octylgallate (OG) and butylhydroxytoluene (BHT) in vegetables oils, margarine and hydrogenated fats by high performance liquid chromatographic. The methodology revealed itself efficient, with recovery rates above 90% for all antioxidant substances, besides good linearity in concentration range of 40-240 mg kg-1 (r = 0,999), repeatability with CV < 3,7% and limit of quantification 16.55, 10.32, 1.40, 3.76 and 9.30 mg/kg for BHT, BHA, PG, OG and TBHQ, respectively.
Resumo:
An analytical method for the isolation based on matrix solid-phase dispersion technique and gas chromatographic determination of pesticides in cattle plasma is presented. It was fortified 0.25 g of plasma with pesticides and blended with 1 g each C18 and Na2SO4. The homogenized matter was transferred to a SPE cartridge, which contained 1 g of activated florisil with 5 mL acetonitrile. The analites were eluted under vaccum with 15 mL acetonitrile, the extract was analyzed by gas chromatography-mass spectrometry. The limit of quantification of the method was 0.04 mg L-1 for chlorphenvinfos and fipronil and 0.02 mg L-1 for cypermethrin..
Resumo:
A cleaning validation method was developed and validated, based on swabbing sampling and simultaneous chromatographic determination of sulfamethoxazole (SMX) and trimethoprim (TMP) residues. The method presented limits of detection of 0.06 mg mL-1 for SMX and 0.09 mg mL-1 for TMP. It was considered selective, precise, accurate and robust according to the guidelines from ANVISA, the Brazilian regulatory agency, and International Conference on Harmonization. Mean swab recovery factors of 98.5% for SMX and 97.7% for TMP were obtained for spiked stainless steel plates. The method was successfully applied to the assay of actual swab samples collected from eleven points on an equipment surface.
Resumo:
A reversed-phase liquid chromatographic (LC) and ultraviolet (UV) spectrophotometric methods were developed and validated for the assay of bromopride in oral and injectable solutions. The methods were validated according to ICH guideline. Both methods were linear in the range between 5-25 μg mL-1 (y = 41837x - 5103.4, r = 0.9996 and y = 0.0284x - 0.0351, r = 1, respectively). The statistical analysis showed no significant difference between the results obtained by the two methods. The proposed methods were found to be simple, rapid, precise, accurate, and sensitive. The LC and UV methods can be used in the routine quantitative analysis of bromopride in oral and injectable solutions.
Resumo:
A chromatographic technique for determination of rutin and narcissin in marigold extract and topical formulations was developed and validated. The method shows linearity over the concentration range of 0.2 - 6.0 μg/mL of rutin (r = 0.9986) and 0.8 - 12.0 μg/mL of narcissin (r = 0.9951). The values obtained for precision and accuracy are in agreement with ICH guidelines. Both the formulation excipients and the porcine ear skin samples did not interfere with the flavonoids determination. The recovery of rutin and narcissin in skin samples added with marigold extract was 81.41% and 83.35%, respectively, which demonstrate the applicability of this method to perform skin penetration studies.
Resumo:
The bioassay, first order derivative UV spectrophotometry and chromatographic methods for assaying fluconazole capsules were compared. They have shown great advantages over the earlier published methods. Using the first order derivative, the UV spectrophotometry method does not suffer interference of excipients. Validation parameters such as linearity, precision, accuracy, limit of detection and limit of quantitation were determined. All methods were linear and reliable within acceptable limits for antibiotic pharmaceutical preparations being accurate, precise and reproducible. The application of each method as a routine analysis should be investigated considering cost, simplicity, equipment, solvents, speed, and application to large or small workloads.
Resumo:
The objective of this study was to optimize and validate the solid-liquid extraction (ESL) technique for determination of picloram residues in soil samples. At the optimization stage, the optimal conditions for extraction of soil samples were determined using univariate analysis. Ratio soil/solution extraction, type and time of agitation, ionic strength and pH of extraction solution were evaluated. Based on the optimized parameters, the following method of extraction and analysis of picloram was developed: weigh 2.00 g of soil dried and sieved through a sieve mesh of 2.0 mm pore, add 20.0 mL of KCl concentration of 0.5 mol L-1, shake the bottle in the vortex for 10 seconds to form suspension and adjust to pH 7.00, with alkaline KOH 0.1 mol L-1. Homogenate the system in a shaker system for 60 minutes and then let it stand for 10 minutes. The bottles are centrifuged for 10 minutes at 3,500 rpm. After the settlement of the soil particles and cleaning of the supernatant extract, an aliquot is withdrawn and analyzed by high performance liquid chromatography. The optimized method was validated by determining the selectivity, linearity, detection and quantification limits, precision and accuracy. The ESL methodology was efficient for analysis of residues of the pesticides studied, with percentages of recovery above 90%. The limits of detection and quantification were 20.0 and 66.0 mg kg-1 soil for the PVA, and 40.0 and 132.0 mg kg-1 soil for the VLA. The coefficients of variation (CV) were equal to 2.32 and 2.69 for PVA and TH soils, respectively. The methodology resulted in low organic solvent consumption and cleaner extracts, as well as no purification steps for chromatographic analysis were required. The parameters evaluated in the validation process indicated that the ESL methodology is efficient for the extraction of picloram residues in soils, with low limits of detection and quantification.
Resumo:
Two high performance liquid chromatography (HPLC) methods for the quantitative determination of indinavir sulfate were tested, validated and statistically compared. Assays were carried out using as mobile phases mixtures of dibutylammonium phosphate buffer pH 6.5 and acetonitrile (55:45) at 1 mL/min or citrate buffer pH 5 and acetonitrile (60:40) at 1 mL/min, an octylsilane column (RP-8) and a UV spectrophotometric detector at 260 nm. Both methods showed good sensitivity, linearity, precision and accuracy. The statistical analysis using the t-student test for the determination of indinavir sulfate raw material and capsules indicated no statistically significant difference between the two methods.
Resumo:
An alternative methodology for analysis of acetaminophen (Ace), phenylephrine (Phe) and carbinoxamine (Car) in tablets by ion-pair reversed phase high performance liquid chromatography was validated. The pharmaceutical preparations were analyzed by using a C18 column (5 μm, 300 mm, 3.9 mm) and mobile phase consisting of 60% methanol and 40% potassium monobasic phosphate aqueous solution (62.46 mmol L-1) added with 1 mL phosphoric acid, 0.50 mL triethylamine and 0.25 g sodium lauryl sulfate. Isocratic analysis was performed under direct UV detection at 220 nm for Phe and Car and at 300 nm for Ace within 5 min.