43 resultados para INDUCTIVELY COUPLED PLASMA
Resumo:
Meglumine antimoniate (MA) and sodium stibogluconate are pentavalent antimony (SbV) drugs used since the mid-1940s. Notwithstanding the fact that they are first-choice drugs for the treatment of leishmaniases, there are gaps in our knowledge of their toxicological profile, mode of action and kinetics. Little is known about the distribution of antimony in tissues after SbV administration. In this study, we evaluated the Sb content of tissues from male rats 24 h and three weeks after a 21-day course of treatment with MA (300 mg SbV/kg body wt/d, subcutaneous). Sb concentrations in the blood and organs were determined by inductively coupled plasma-mass spectrometry. In rats, as with in humans, the Sb blood levels after MA dosing can be described by a two-compartment model with a fast (t1/2 = 0.6 h) and a slow (t1/2 >> 24 h) elimination phase. The spleen was the organ that accumulated the highest amount of Sb, while bone and thyroid ranked second in descending order of tissues according to Sb levels (spleen >> bone, thyroid, kidneys > liver, epididymis, lungs, adrenals > prostate > thymus, pancreas, heart, small intestines > skeletal muscle, testes, stomach > brain). The pathophysiological consequences of Sb accumulation in the thyroid and Sb speciation in the liver, thyroid, spleen and bone warrant further studies.
Resumo:
The amounts of macro (P, K, Ca and Mg) and micronutrients (Cu and Zn) extracted with the Mehlich-1 (M1) solution, by the 1.0 mol L-1 KCl (KCl) and with the 0.1 mol L-1 HCl (HCl) for representative soil types of the Rio Grande do Sul state (Brazil) were compared with those extracted with the Mehlich-1 solution determined with the inductively coupled plasma optical emission spectroscopy (ICP). The amounts of nutrients extracted by the different methods showed high correlation coefficients. On average, the Mehlich-1 solution extracted similar amounts of P, determined with colorimetric and ICP methods, and, K determined with emission and ICP. The amounts of Ca and Mg extracted with the Mehlich-1 solution, determined by ICP, were similar to those extracted with the KCl solution determined by the atomic absorption spectrophotometry. The amounts of Cu and Zn extracted with the Mehlich-1 solution, determined by the ICP, were higher than those extracted with the 0.1 mol L-1 HCl determined by the atomic absorption spectrophotometry. The results indicate that the Mehlich-1 solution and ICP can be used for simultaneous multielement extraction and determination for Southern Brazilian soils. However, a conversion factor for values interpretation is needed. The use of the conversion factor to determine the K availability index in soils is adequate and does not affect the K recommendations for crops in southern Brazilian soils.
Resumo:
The variety of soils in the State of Acre is wide and their chemical profiles are still not fully understood. The nature of the material of origin of these soils is indicated by the high aluminium (Al) content, commonly associated with high calcium (Ca) and magnesium (Mg) contents. The study objective was to use different methods to quantify Al in soils from toposequences formed from material of a sedimentary nature originating from the Solimões Formation, in Acre, Brazil. Trenches were opened at three distinct points in the landscape: shoulder, backslope and footslope positions. Soil samples were collected for physical, chemical, mineralogical analyses. The Al content was quantified using different methods. High Al contents were found in most of these horizons, associated with high Ca and Mg levels, representing the predominant cations in the sum of exchangeable bases. The mineralogy indicates that the soils are still in a low weathering phase, with the presence of significant quantities of 2:1 minerals. Similar Al contents were determined by the methods of NaOH titration, xylenol orange spectrometry and inductively coupled plasma optical emission spectrometry. However, no consistent data were obtained by the pyrocatechol violet method. Extraction with KCl overestimated the exchangeable Al content due to its ability to extract the non-exchangeable Al present in the smectite interlayers. It was observed that high Al contents are related to the instability of the hydroxyl-Al smectite interlayers.
Resumo:
In comparison with other micronutrients, the levels of nickel (Ni) available in soils and plant tissues are very low, making quantification very difficult. The objective of this paper is to present optimized determination methods of Ni availability in soils by extractants and total content in plant tissues for routine commercial laboratory analyses. Samples of natural and agricultural soils were processed and analyzed by Mehlich-1 extraction and by DTPA. To quantify Ni in the plant tissues, samples were digested with nitric acid in a closed system in a microwave oven. The measurement was performed by inductively coupled plasma/optical emission spectrometry (ICP-OES). There was a positive and significant correlation between the levels of available Ni in the soils subjected to Mehlich-1 and DTPA extraction, while for plant tissue samples the Ni levels recovered were high and similar to the reference materials. The availability of Ni in some of the natural soil and plant tissue samples were lower than the limits of quantification. Concentrations of this micronutrient were higher in the soil samples in which Ni had been applied. Nickel concentration differed in the plant parts analyzed, with highest levels in the grains of soybean. The grain, in comparison with the shoot and leaf concentrations, were better correlated with the soil available levels for both extractants. The methods described in this article were efficient in quantifying Ni and can be used for routine laboratory analysis of soils and plant tissues.
Resumo:
An automatic dispenser based on a flow-injection system used to introduce sample and analytical solution into an inductively coupled plasma mass spectrometer through a spray chamber is proposed. Analytical curves were constructed after the injection of 20 to 750 µL aliquots of a multielement standard solution (20.0 µg L-1 in Li, Be, Al, V, Cr, Mn, Ni, Co, Cu, Zn, As, Se, Sr, Ag, Cd, Ba, Tl, Pb) and the acquisition of the integrated transient signals. The linear concentration range could be extended to ca. five decades. The performance of the system was checked by analyzing a NIST 1643d reference material. Accuracy could be improved by the proper selection of the injected volume. Besides good precision (r.s.d. < 2%), the results obtained with the proposed procedure were closer to the certified values of the reference material than those obtained by direct aspiration or by injecting 125 µL of several analytical solutions and samples.
Resumo:
The salt accumulation process in some reservoirs of regular and irregular use (from 10 to 50 years of constrution), located in the Southeast of Bahia State was evaluated. Inductively coupled plasma atomic emission spectrometry was used to evaluate the concentrations of Na, K, Ca and Mg in water samples from inside and upstream of the reservoirs. The results showed that for reservoirs of irregular use, the salt accumulation, indicated by the tracer Na, increases with the age of the reservoirs, however for the reservoirs of regular use the hydraulic retention time is the main parameter.
Resumo:
In the present work four different analytical methodologies were studied for the determination of iron and titanium in Portland cement. The cement samples were dissolved with hot HCl and HF, being compared Fe and Ti concentrations through four analytical methods: molecular absorption spectrophotometry using the reagents 1,2-hydroxybenzene-3,5-disulfonic acid (Tiron) and the 5-chloro-salicylic acid (CSA), inductively coupled plasma atomic emission spectrometry (ICP-AES) and flame atomic absorption spectrophotometry (FAAS). In the spectrophotometric determinations were studied pH conditions, reagents addition order, interferences, amount of reagents, linear range and stability of the system. In the techniques of ICP-AES and FAAS were studied the best lines, interferences, sensibility and linear range. The obtained results were compared and the agreement was evaluated among the methods for the determination of the metals of interest.
Resumo:
Inductively coupled plasma mass spectrometry (ICP-MS) has been used for the determination of twenty minor and trace elements in hair samples from an urban population group (N = 1775), aiming at the establishment of reliable hair reference intervals. Statistical evaluation of the data with respect to age, sex and anatomic region was performed by multivariant analysis and according to recommendations of the International Federation of Clinical Chemistry (IFCC). The results show that mainly age and anatomic region (scalp or pubis) influence significantly the concentration of several elements. Comparison of the here calculated reference intervals with those previously published and used by clinical laboratories for this population showed larger discrepancies and the need for an urgent revision of these data.
Resumo:
The historical development of atomic spectrometry techniques based on chemical vapor generation by both batch and flow injection sampling formats is presented. Detection via atomic absorption spectrometry (AAS), microwave induced plasma optical emission spectrometry (MIP-OES), inductively coupled plasma optical emission spectrometry (ICP-OES) , inductively coupled plasma mass spectrometry (ICP-MS) and furnace atomic nonthermal excitation spectrometry (FANES) are considered. Hydride generation is separately considered in contrast to other methods of generation of volatile derivatives. Hg ¾ CVAAS (cold vapor atomic absorption spectrometry) is not considered here. The current state-of-the-art, including extension, advantages and limitations of this approach is discussed.
Resumo:
The use of an internal standard (IS) in ET AAS can be considered a new trend after the commercial introduction of a simultaneous spectrometer. The evaluation of experimental data to choose the most appropriate IS can be done by comparing correlation graphs. They were used to verify the resemblance among the simultaneous measurements obtained for the analyte(s) and the IS by inductively coupled plasma optical emission spectrometry (ICPOES). The judicious selection of IS by using correlation graphs for determinations by ET AAS can be exploited to improve the precision and accuracy of the analytical results. Therefore, a new approach for studying the use of IS in ET AAS is presented.
Resumo:
A boron-doped diamond electrode is used for determination of Mn(II) in atmospheric particulate matter by square wave cathodic stripping voltammetry. The analytical curve was linear for Mn(II) concentrations between 5.0 and 37.5 µg L-1, with quantification limit of 3.6 µg L-1. The precision was evaluated by the relative standard deviation, with values between 5.1% and 9.3%. The electrode is free of adsorption, minimizing memory effects. Samples collected in the workplace atmosphere of a foundry had Mn(II) concentrations between 0.4 and 4 µg m-3. No significant differences were observed between the proposed method and inductively coupled plasma optical emission spectroscopy.
Resumo:
Inductively Coupled Plasma Optical Emission Spectrometry was used to determine Ca, Mg, Mn, Fe, Zn and Cu in samples of processed and natural coconut water. The sample preparation consisted in a filtration step followed by a dilution. The analysis was made employing optimized instrumental parameters and the results were evaluated using methods of Pattern Recognition. The data showed common concentration values for the analytes present in processed and natural samples. Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA) indicated that the samples of different kinds were statistically different when the concentrations of all the analytes were considered simultaneously.
Resumo:
The applicability of the recently proposed procedure based on gradual sample addition to microwave-assisted pre-heated concentrated acid is limited by the sample viscosity. In this work, lubricating oil samples with high viscosity were encapsulated and manually added to the microwave-assisted pre-heated concentrated digestion mixture. The procedure was applied for determination of Al, Ca, Cr, Cu, Fe, Mg, Ni, P, Pb, Si, Sn, Sr, V, W, and Zn in lubricating oil by inductively coupled plasma optical emission spectrometry (ICP OES). Determined and certified values for Ca, Mg, P, and Zn in lubricating oil were in agreement at a 95% confidence level.
Resumo:
The purpose of this study was to assess the concentration of vitamins and minerals in meat protein hydrolysates. Calcium, phosphorus and iron were analyzed by inductively coupled-plasma atomic emission spectrophotometry; vitamin C was analyzed by the reduction of cupric ions and vitamins B1 and B2 by fluorescence. Regarding minerals, the beef hydrolysate (BH) had more iron than the turkey hydrolysate (TH) and the chicken hydrolysate (CH); TH had a little more phosphorus. BH had the largest amount of vitamin C, and similar amounts of vitamins B1 and B2. The amount of these nutrients found in the hydrolysates suggests that it is possible to use them to enrich special dietary formulations.
Resumo:
One hundred fifteen cachaça samples derived from distillation in copper stills (73) or in stainless steels (42) were analyzed for thirty five itens by chromatography and inductively coupled plasma optical emission spectrometry. The analytical data were treated through Factor Analysis (FA), Partial Least Square Discriminant Analysis (PLS-DA) and Quadratic Discriminant Analysis (QDA). The FA explained 66.0% of the database variance. PLS-DA showed that it is possible to distinguish between the two groups of cachaças with 52.8% of the database variance. QDA was used to build up a classification model using acetaldehyde, ethyl carbamate, isobutyl alcohol, benzaldehyde, acetic acid and formaldehyde as chemical descriptors. The model presented 91.7% of accuracy on predicting the apparatus in which unknown samples were distilled.