81 resultados para Flow-pressure response
Resumo:
ABSTRACT Microsprinkler non-pressure compensating nozzles usually show water flow variation along the lateral line. This study aimed at adapting microtubes into non-compensating system of microsprinklers previous installed in the field, as a self-compensated nozzle, to improve the flow uniformity along the lateral line. Microtubes were adapted to three types of commercial microsprinklers. Tests were conducted, both in the laboratory and in field, to evaluate the microsprinkler performance at four different flows (40, 50, 60 and 70 L h-1) under pressure head range from 75 to 245 kPa. Nozzles presented coefficient of flow-rate variation (CVq) lower than 5.5% and distribution uniformity (DU) greater than 95%, which are classified as excellent. The original spatial water distribution of the microsprinkler did not change by using microtube as a nozzle. This device adapted to non-pressure compensating microsprinklers are functional and operate effectively with flows ranging up to 70 L h-1. Small variations at microsprinkler flows along the lateral line can occur, however, at random manner, which is common for pressure-compensating nozzles. Therefore, the microtube technique is able to control pressure variation in microsprinklers.
Resumo:
An experimental investigation is performed in a turbulent flow in a seven wire-wrapped rod bundle, mounted in an open air facility. Static pressure distributions are measured on central and peripheral rods. By using a Preston tube, the wall shear stress profiles are experimentally obtained along the perimeter of the rods. The geometric parameters of the test section are P/D=1.20 and H/D=15. The measuring section is located at L/D=40 from the air inlet. It is observed that the dimensionless static pressure and wall shear stress profiles are nearly independent of the Reynolds number and strongly dependent of the wire-spacer position, with abrupt variations of the parameters in the neighborhood of the wires.
Resumo:
Fuel elements of PWR type nuclear reactors consist of rod bundles, arranged in a square array, and held by spacer grids. The coolant flows, mainly, axially along the rods. Although such elements are laterally open, experiments are performed in closed type test sections, originating the appearance of subchannels with different geometries. In the present work, utilizing a test section of two bundles of 4x4 pins each, experiments were performed to determine the friction and the grid drag coefficients for the different subchannels and to observe the effect of the grids in the crossflow, in cases of inlet flow maldistribution.
Resumo:
An experimental apparatus for the study of core annular flows of heavy oil and water at room temperature has been set up and tested at laboratory scale. The test section consists of a 2.75 cm ID galvanized steel pipe. Tap water and a heavy oil (17.6 Pa.s; 963 kg/m³) were used. Pressure drop in a vertical upward test section was accurately measured for oil flow rates in the range 0.297 - 1.045 l/s and water flow rates ranging from 0.063 to 0.315 l/s. The oil-water input ratio was in the range 1-14. The measured pressure drop comprises gravitational and frictional parts. The gravitational pressure drop was expressed in terms of the volumetric fraction of the core, which was determined from a correlation developed by Bannwart (1998b). The existence of an optimum water-oil input ratio for each oil flow rate was observed in the range 0.07 - 0.5. The frictional pressure drop was modeled to account for both hydrodynamic and net buoyancy effects on the core. The model was adjusted to fit our data and shows excellent agreement with data from another source (Bai, 1995).
Resumo:
The available data suggests that hypotension caused by Hg2+ administration may be produced by a reduction of cardiac contractility or by cholinergic mechanisms. The hemodynamic effects of an intravenous injection of HgCl2 (5 mg/kg) were studied in anesthetized rats (N = 12) by monitoring left and right ventricular (LV and RV) systolic and diastolic pressures for 120 min. After HgCl2 administration the LV systolic pressure decreased only after 40 min (99 ± 3.3 to 85 ± 8.8 mmHg at 80 min). However, RV systolic pressure increased, initially slowly but faster after 30 min (25 ± 1.8 to 42 ± 1.6 mmHg at 80 min). Both right and left diastolic pressures increased after HgCl2 treatment, suggesting the development of diastolic ventricular dysfunction. Since HgCl2 could be increasing pulmonary vascular resistance, isolated lungs (N = 10) were perfused for 80 min with Krebs solution (continuous flow of 10 ml/min) containing or not 5 µM HgCl2. A continuous increase in pulmonary vascular resistance was observed, suggesting the direct effect of Hg2+ on the pulmonary vessels (12 ± 0.4 to 29 ± 3.2 mmHg at 30 min). To examine the interactions of Hg2+ and changes in cholinergic activity we analyzed the effects of acetylcholine (Ach) on mean arterial blood pressure (ABP) in anesthetized rats (N = 9) before and after Hg2+ treatment (5 mg/kg). Using the same amount and route used to study the hemodynamic effects we also examined the effects of Hg2+ administration on heart and plasma cholinesterase activity (N = 10). The in vivo hypotensive response to Ach (0.035 to 10.5 µg) was reduced after Hg2+ treatment. Cholinesterase activity (µM h-1 mg protein-1) increased in heart and plasma (32 and 65%, respectively) after Hg2+ treatment. In conclusion, the reduction in ABP produced by Hg2+ is not dependent on a putative increase in cholinergic activity. HgCl2 mainly affects cardiac function. The increased pulmonary vascular resistance and cardiac failure due to diastolic dysfunction of both ventricles are factors that might contribute to the reduction of cardiac output and the fall in arterial pressure.
Resumo:
We investigated the effect of L-NAME, a nitric oxide (NO) inhibitor and sodium nitroprusside (SNP), an NO-donating agent, on pilocarpine-induced alterations in salivary flow, mean arterial blood pressure (MAP) and heart rate (HR) in rats. Male Holtzman rats (250-300 g) were implanted with a stainless steel cannula directly into the median preoptic nucleus (MnPO). Pilocarpine (10, 20, 40, 80, 160 µg) injected into the MnPO induced an increase in salivary secretion (P<0.01). Pilocarpine (1, 2, 4, 8, 16 mg/kg) ip also increased salivary secretion (P<0.01). Injection of L-NAME (40 µg) into the MnPO prior to pilocarpine (10, 20, 40, 80, 160 µg) injected into the MnPO or ip (1, 2, 4, 8, 16 mg/kg) increased salivary secretion (P<0.01). SNP (30 µg) injected into the MnPO or ip prior to pilocarpine attenuated salivary secretion (P<0.01). Pilocarpine (40 µg) injection into the MnPO increased MAP and decreased HR (P<0.01). Pilocarpine (4 mg/kg body weight) ip produced a decrease in MAP and an increase in HR (P<0.01). Injection of L-NAME (40 µg) into the MnPO prior to pilocarpine potentiated the increase in MAP and reduced HR (P<0.01). SNP (30 µg) injected into the MnPO prior to pilocarpine attenuated (100%) the effect of pilocarpine on MAP, with no effect on HR. Administration of L-NAME (40 µg) into the MnPO potentiated the effect of pilocarpine injected ip. SNP (30 µg) injected into the MnPO attenuated the effect of ip pilocarpine on MAP and HR. The present study suggests that in the rat MnPO 1) NO is important for the effects of pilocarpine on salivary flow, and 2) pilocarpine interferes with blood pressure and HR (side effects of pilocarpine), that is attenuated by NO.
Resumo:
The first minutes of the time course of cardiopulmonary reflex control evoked by lower body negative pressure (LBNP) in patients with hypertensive cardiomyopathy have not been investigated in detail. We studied 15 hypertensive patients with left ventricular dysfunction (LVD) and 15 matched normal controls to observe the time course response of the forearm vascular resistance (FVR) during 3 min of LBNP at -10, -15, and -40 mmHg in unloading the cardiopulmonary receptors. Analysis of the average of 3-min intervals of FVR showed a blunted response of the LVD patients at -10 mmHg (P = 0.03), but a similar response in both groups at -15 and -40 mmHg. However, using a minute-to-minute analysis of the FVR at -15 and -40 mmHg, we observed a similar response in both groups at the 1st min, but a marked decrease of FVR in the LVD group at the 3rd min of LBNP at -15 mmHg (P = 0.017), and -40 mmHg (P = 0.004). Plasma norepinephrine levels were analyzed as another neurohumoral measurement of cardiopulmonary receptor response to LBNP, and showed a blunted response in the LVD group at -10 (P = 0.013), -15 (P = 0.032) and -40 mmHg (P = 0.004). We concluded that the cardiopulmonary reflex response in patients with hypertensive cardiomyopathy is blunted at lower levels of LBNP. However, at higher levels, the cardiopulmonary reflex has a normal initial response that decreases progressively with time. As a consequence of the time-dependent response, the cardiopulmonary reflex response should be measured over small intervals of time in clinical studies.
Resumo:
Blood pressure pattern was analyzed in 12 complete quadriplegics with chronic lesions after three months of treadmill gait training. Before training, blood pressure values were obtained at rest, during treadmill walking and during the recovery phase. Gait training was performed for 20 min twice a week for three months. Treadmill gait was achieved using neuromuscular electrical stimulation, assisted by partial body weight relief (30-50%). After training, blood pressure was evaluated at rest, during gait and during recovery phase. Before and after training, mean systolic blood pressures and heart rates increased significantly during gait compared to rest (94.16 ± 5.15 to 105 ± 5.22 mmHg and 74.27 ± 10.09 to 106.23 ± 17.31 bpm, respectively), and blood pressure decreased significantly in the recovery phase (86.66 ± 9.84 and 57.5 ± 8.66 mmHg, respectively). After three months of training, systolic blood pressure became higher at rest (94.16 ± 5.15 mmHg before training and 100 ± 8.52 mmHg after training; P < 0.05) and during gait exercise (105 ± 5.22 mmHg before and 110 ± 7.38 mmHg after training; P < 0.05) when compared to the initial values, with no changes in heart rate. No changes occurred in blood pressure during the recovery phase, with the lower values being maintained. A drop in systolic pressure from 105 ± 5.22 to 86.66 ± 9.84 mmHg before training and from 110 ± 7.38 to 90 ± 7.38 mmHg after training was noticed immediately after exercise, thus resulting in hypotensive symptoms when chronic quadriplegics reach the sitting position from the upright position.
Resumo:
We evaluated the recovery of cardiovascular function after transient cardiogenic shock. Cardiac tamponade was performed for 1 h and post-shock data were collected in 5 domestic large white female pigs (43 ± 5 kg) for 6 h. The control group (N = 5) was observed for 6 h after 1 h of resting. During 1 h of cardiac tamponade, experimental animals evolved a low perfusion status with a higher lactate level (8.0 ± 2.2 vs 1.9 ± 0.9 mEq/L), lower standard base excess (-7.3 ± 3.3 vs 2.0 ± 0.9 mEq/L), lower urinary output (0.9 ± 0.9 vs 3.0 ± 1.4 mL·kg-1·h-1), lower mixed venous saturation, higher ileum partial pressure of CO2-end tidal CO2 (EtCO2) gap and a lower cardiac index than the control group. Throughout the 6-h recovery phase after cardiac tamponade, tamponade animals developed significant tachycardia with preserved cardiac index, resulting in a lower left ventricular stroke work, suggesting possible myocardial dysfunction. Vascular dysfunction was present with persistent systemic hypotension as well as persistent pulmonary hypertension. In contrast, oliguria, hyperlactatemia and metabolic acidosis were corrected by the 6th hour. The inflammatory characteristics were an elevated core temperature and increased plasma levels of interleukin-6 in the tamponade group compared to the control group. We conclude that cardiovascular recovery after a transient and severe low flow systemic state was incomplete. Vascular dysfunction persisted up to 6 h after release of tamponade. These inflammatory characteristics may also indicate that inflammatory activation is a possible pathway involved in the pathogenesis of cardiogenic shock.
Hydraulic conductivity in response to exchangeable sodium percentage and solution salt concentration
Resumo:
Hydraulic conductivity is determined in laboratory assays to estimate the flow of water in saturated soils. However, the results of this analysis, when using distilled or deionized water, may not correspond to field conditions in soils with high concentrations of soluble salts. This study therefore set out to determine the hydraulic conductivity in laboratory conditions using solutions of different electrical conductivities in six soils representative of the State of Pernambuco, with the exchangeable sodium percentage adjusted in the range of 5-30%. The results showed an increase in hydraulic conductivity with both decreasing exchangeable sodium percentage and increasing electrical conductivity in the solution. The response to the treatments was more pronounced in soils with higher proportion of more active clays. Determination of hydraulic conductivity in laboratory is routinely performed with deionized or distilled water. However, in salt affected soils, these determinations should be carried out using solutions of electrical conductivity different from 0 dS m-1, with values close to those determined in the saturation extracts.
Resumo:
The determination of the rabies neutralizing antibody (VNA) response after immunization against rabies is an acceptable index of the efficacy of a vaccine and a successful treatment. Several tests have been developed in attempt to improve the assessment of VNA, from mice inoculation to cell-culture fluorescence inhibition tests. All of them, however, present special difficulties in terms of reading or accuracy. The present study describes a neutralization test performed in cell-culture appraised by flow cytometry (FC). Serial dilutions of the serum samples were mixed in vitro with rabies virus before the addition of BHK-21 cells. After 24h-incubation, cells were released by trypsin treatment, fixed and permeabilized with a p-formaldehyde solution and stained with a rabies virus nucleocapsid protein-specific antibody conjugate. The percentage of virus infection inhibition caused by specific antibodies present in the serum were evaluated in a Beckton & Dickinson FACSCalibur® flow cytometer. A correlation curve between the IU/ml content and the percentage of infective inhibition was built with a reference serum and the VNA titers of serum samples were obtained by extrapolation. Titers obtained by FC and standard test showed an effective pairing results (p < 0.01), with a correlation coefficient (r) = 0.7. These results permit to envisage the FC as a suitable technique to evaluate VNA in sera from immunized animals and likely in human serum samples. Nevertheless, new studies comparing FC to gold-standard techniques are required for determining the FC values of Sensibility and Specificity .
Resumo:
Observations were made on the mortality of Dipetalogaster maximus in relation to humidity and temperature in controlled conditions. The bugs survived longer at higher relative humidities and at lower temperatures, but when these results were plotted against vapour pressure déficit, no independent temperature effect was seen. The results may be explained by thefaster depletion of water reserves at higher vapour pressure deficits. D. maximus did not increase its resistance to water vapour transferat higher vapour pressure deficits. In orderto increase survival rates when D. maximus is used for xenodiagnosis in field conditions it should be protected against high temperatures and low humidities.
Resumo:
Pressure sores are common among bedridden, elderly, or malnourished patients, and may occur in terminal ill patients because of impaired mobility, fecal or urinary incontinence, and decreased healing capacity. The aim of this study was to compare frequency of pressure sores between malnourished and non-malnourished necropsied adults. METHOD: All (n = 201) adults (age ³ 18 years) autopsied between 1986 and 1996 at the Teaching Hospital of Triangulo Mineiro Medical School (Uberaba) were eligible for the study. Gender, race, weight, height and main diagnoses were recorded. Ninety-six cases were excluded because of probable body water retention (congestive heart failure, hepatic insufficiency, nephrotic syndrome) or pressure sores secondary to peripheral vascular ischemia. Body mass index (BMI) was used to define malnourished (BMI < 18.5 kg/m²) and non-malnourished (BMI > 18.5kg/m²) groups. RESULTS: Except for weight (42.5kg; range: 28-57 vs. 60; 36-134.5kg) and BMI (16.9; range: 12.4-18.5 vs. 22.7; range: 18.5-54.6kg/m²), respectively, there were no statistical differences among 43 malnourished and 62 non-malnourished cases in relation to age (54.9 ± 20.4 vs. 52.9 ± 17.9 years), percentage of white persons (74.4 vs. 64.5%), male gender (76.7 vs. 69.3%) and main diagnoses. Five malnourished (11.6%) and 7 (11.5%) non-malnourished cases had pressure sores (p=0.89). CONCLUSION: Pressure sores were equally common findings in necropsied persons with protein-energy malnutrition, as assessed by body mass index.
Resumo:
Left ventricular hypertrophy following volume overload is regarded as an example of cardiac remodeling without increased fibrosis accumulation. However, infarction is associated with increased fibrosis within the noninfarcted, hypertrophied myocardium, particularly in the subendocardial regions. It is conceivable to suppose that, as also occurs postinfarction, low coronary driving pressure may also interfere with accumulation of myocardial fibrosis following aortocaval fistula. PURPOSE: To investigate the role of acute hemodynamic changes in subsequent deposition of cardiac fibrosis in response to aortocaval fistula. METHOD: Aortocaval fistula were created in 4 groups of Wistar rats that were followed over 4 and 8 weeks: aortocaval fistula 4 and aortocaval fistula 8 (10 rats each) and their respective controls (sham-operated controls - Sh), Sh4 and Sh8 (8 rats each). Hemodynamic measurements were performed 1 week after surgery. Hypertrophy and fibrosis were quantified by myocyte diameter and collagen volume fraction at the end of follow up. RESULT: Compared with Sh4 and Sh8, pulse pressure, left ventricular end-diastolic pressure, and +dP/dt were higher in aortocaval fistula 4 and aortocaval fistula 8, but -dP/dt was similar. Coronary driving pressure (mm Hg), used as an estimate of perfusion pressure, was lower in aortocaval fistula 8 (52.6 ± 4.1) than in Sh8 (100.8 ± 1.3), but comparable between aortocaval fistula 4 (50.0 ± 8.9) and Sh4 (84.8 ± 2.3). Myocyte diameter was greater in aortocaval fistula 8, whereas interstitial and subendocardial fibrosis were greater in aortocaval fistula 4 and aortocaval fistula 8. Coronary driving pressure correlated inversely and independently with subendocardial fibrosis (r² = .86, P <.001), whereas left ventricular systolic pressure (r² = 0.73, P = .004) and end-diastolic pressure (r² = 0.55, P = 012) correlated positively and independently with interstitial fibrosis. CONCLUSION: Coronary driving pressure falls and ventricular pressures increase early after aortocaval fistula and are associated with subsequent myocardial fibrosis deposition.
Resumo:
PURPOSE: To assess the effects of the elevation of the left ventricular end-diastolic pressure (LVEDP) on the value of the 1st temporal derivative of the ventricular pressure (dP/dt). METHODS: Nineteen anesthetized dogs were studied. The dogs were mechanically ventilated and underwent thoracotomy with parasympathetic nervous system block. The LVEDP was controlled with the use of a perfusion circuit connected to the left atrium and adjusted to the height of a reservoir. The elevation of the LVEDP was achieved by a sudden increase in the height of a reservoir filled with blood. Continuous recordings of the electrocardiogram, the aortic and ventricular pressures and the dP/dt were performed. RESULTS: Elevation of the LVEDP did not result in any variation of the heart rate (167±16.0bpm, before the procedure; 167±15.5bpm, after the procedure). All the other variables assessed, including systolic blood pressure (128±18.3mmHg and 150±21.5mmHg), diastolic blood pressure (98±16.9mmHg and 115±19.8mmHg), LVEDP (5.5±2.49 and 9.3±3.60mmHg), and dP/dt (4,855 ± 1,082 mmHg/s and 5,149±1,242mmHg/s) showed significant increases following the expansion of the ventricular cavity. Although the elevation of the dP/dt was statistically significant, 6 dogs curiously showed a decrease in the values of dP/dt. CONCLUSION: Sudden elevation of the LVEDP resulted in increased values of dP/dt; however, in some dogs, this response was not uniform.