37 resultados para Electron ion interaction pseudo potential(EIIP)
Resumo:
Morpho-biological diversity of Trypanosoma cruzi has been known since Chagas' first works in 1909. Several further studies confirmed the morphological differences among the parasite strains, which were isolated from different reservoirs and vectors, as well as from human beings. In the early sixties, antigenic differences were found in the parasite strains from various sources. These differences, coupled to the observation of regional variations of the disease, led to the proposal of the term cruzi complex to designate the taxon T. cruzi. Since then this protozoan has been typed in distinct biodemes, zymodemes and lineages which were consensually grouped into T. cruzi I, T. cruzi II and into non-grouped strains. T. cruzi genotypic characterization, initially carried out by schizodeme analysis and more recently by various other techniques, has shown a great diversity of the parasite strains. In fact, T. cruzi is formed by groups of heterogeneous sub-population, which present specific characteristics, including distinct histotropism. The interaction of the different infecting clones of the cruzi complex and the human host will determine the morbidity of the disease.
Resumo:
Propolis has shown activity against pathogenic microorganisms that cause diseases in humans and animals. The ethanol (Et-Blg) and acetone (Ket-Blg) extracts from a Bulgarian propolis, with known chemical compositions, presented similar activity against tissue culture-derived amastigotes. The treatment of Trypanosoma cruzi-infected skeletal muscle cells with Et-Blg led to a decrease of infection and of the intracellular proliferation of amastigotes, while damage to the host cell was observed only at concentration 12.5 times higher than those affecting the parasite. Ultrastructural analysis of the effect of both extracts in epimastigotes revealed that the main targets were the mitochondrion and reservosomes. Et-Blg also affected the mitochondrion-kinetoplast complex in trypomastigotes, offering a potential target for chemotherapeutic agents.
Resumo:
The Bacteroides fragilis ATCC strain was grown in a synthetic media with contrasting redox potential (Eh) levels [reduced (-60 mV) or oxidised (+100mV)] and their adhesion capacity to extracellular matrix components was evaluated. The strain was capable of adhering to laminin, fibronectin, fibronectin + heparan sulphate and heparan sulphate. A stronger adherence to laminin after growing the strain under oxidising conditions was verified. Electron microscopy using ruthenium red showed a heterogeneous population under this condition. Dot-blotting analyses confirmed stronger laminin recognition by outer membrane proteins of cells cultured at a higher Eh. Using a laminin affinity column, several putative laminin binding proteins obtained from the cultures kept under oxidising (60 kDa, 36 kDa, 25 kDa and 15 kDa) and reducing (60 kDa) conditions could be detected. Our results show that the expression of B. fragilis surface components that recognise laminin are influenced by Eh variations.
Resumo:
The primary culture of intestinal epithelial cells from domestic cats is an efficient cellular model to study the enteric cycle of Toxoplasma gondii in a definitive host. The parasite-host cell ratio can be pointed out as a decisive factor that determines the intracellular fate of bradyzoites forms. The development of the syncytial-like forms of T. gondii was observed using the 1:20 bradyzoite-host cell ratio, resulting in similar forms described in in vivo systems. This alternative study potentially opens up the field for investigation into the molecular aspects of this interaction. This can contribute to the development of new strategies for intervention of a main route by which toxoplasmosis spreads.
Resumo:
The objective of this work was to evaluate the physiological changes that occur in different leaves during the early and late grain-filling stages of two rice genotypes (Oryza sativa subsp. indica , BRS Pelota cultivar, and O. sativa subsp. japonica , BRS Firmeza cultivar), which present differences in grain yield potential. The plants were cultivated in greenhouse. Pigment content, chlorophyll fluorescence, electron transport and oxygen evolution rate were determined in the grain-filling stage, from the first to the forth leaf (top to bottom). Pigment content, photochemical efficiency of photosystem II and electron transport decreased significantly according to the position of leaves in 'BRS Pelota'. The BRS Firmeza cultivar shows higher pigment content and higher activity of the photosynthetic apparatus in comparison to 'BRS Pelota' during the grain-filling stage.
Resumo:
The objective of this study was to assess genotype by environment interaction for seed yield per plant in rapeseed cultivars grown in Northern Serbia by the AMMI (additive main effects and multiplicative interaction) model. The study comprised 19 rapeseed genotypes, analyzed in seven years through field trials arranged in a randomized complete block design, with three replicates. Seed yield per plant of the tested cultivars varied from 1.82 to 19.47 g throughout the seven seasons, with an average of 7.41 g. In the variance analysis, 72.49% of the total yield variation was explained by environment, 7.71% by differences between genotypes, and 19.09% by genotype by environment interaction. On the biplot, cultivars with high yield genetic potential had positive correlation with the seasons with optimal growing conditions, while the cultivars with lower yield potential were correlated to the years with unfavorable conditions. Seed yield per plant is highly influenced by environmental factors, which indicates the adaptability of specific genotypes to specific seasons.
Resumo:
This work describes the syntheses of O-protected aminoglycosides as an important block building for the preparation of potential bioactive pseudodisaccharide. The new O-protected methyl 3-amino-3-deoxy-alpha-D-glycopyranoside 4 and methyl 2-amino-2-deoxy-alpha-D-glycopyranoside 5 were prepared, respectively, in five and four steps. All compounds were obtained in good yield and characterized by spectral data (¹H and 13C NMR, MS, IR) and elemental analysis.
Resumo:
The gas-phase ion-molecule reactions of the Me3SiN(H)SiMe2+ ion, obtained by electron ionization from Me3SiN(H)SiMe3, have been studied in a Fourier transform ion cyclotron resonance spectrometer in order to understand the mechanistic details of an important chemical system presently used in film formation. This silyl cation has been observed to undergo addition reactions at electron rich centers to form stable adducts that may undergo further methane elimination in the case of alcohols and amines. The most important feature of these reactions is the fact that a metathesis type reaction can be observed in the presence of H2O, and other hydrogen labile substrates like alcohols, leading to the formation of the corresponding oxygen-containing ion, i.e. Me3SiOSiMe2+. For alcohols (ROH), facile formation of a tertiary product ion, presumably corresponding to an Me3Si-O-Si(Me)=O+-R structure with elimination of an amine reveals the strong tendency of these nitrogen-containing ions to undergo metathesis type reactions with oxygen containing substrates.
Resumo:
The atrazine photoelectrochemical degradation has been examined in solutions containing TiO2 on immobilized films under a variety of experimental conditions. It was possible to observe that the supporting electrolyte nature affects the intensity of the photocurrent, being an indicative of the adsorption process. The disappearance of the organic molecule follows approximately a pseudo-first order kinetic. As mineralization product, NH4+ and NO3- ion have been identified. These results indicated that the formation of NH4+ ion can be associated to the effect of atrazine adsorption, due to need of potential adaptation together with a variation in the supporting electrolyte concentration.
Resumo:
Hydrogen bonds formed through the interaction between a high electronic density center (lone electron pairs, π or pseudo-π bonds) and proton donors cause important electronic and vibrational phenomena in many systems. However, it was demonstrated that proton donors interact with hydrides, such as alkali and alkaline earth metals (BeH2, MgH2, LiH and NaH), what yields a new type of interaction so-called dihydrogen bonds. The characterization of these interactions has been performed at light of the Quantum Theory of Atoms in Molecules (QTAIM), by which the electronic densities ρ are quantified and the intermolecular regions are characterized as closed-shell interactions through the analysis of the Laplacian field ∇2ρ.
Resumo:
The electrochemical behavior of the interaction of amodiaquine with DNA on a carbon paste electrode was studied using voltametric techniques. In an acid medium, an electroactive adduct is formed when amodiaquine interacts with DNA. The anodic peak is dependent on pH, scan rate and the concentration of the pharmaceutical. Adduct formation is irreversible in nature, and preferentially occurs by interaction of the amodiaquine with the guanine group. Theoretical calculations for optimization of geometry, and DFT analyses and on the electrostatic potential map (EPM), were used in the investigation of adduct formation between amodiaquine and DNA.
Resumo:
A potentiometric Nickel sensor was prepared using 2-hydroxy-1-naphthylidene-N-cyanoacetohydrazone as electro-active material and epoxy resin as a binding material. A membrane composed of 40% Schiff's base and 60% epoxy resin exhibited the best performance. The membrane showed excellent response in the concentration range of 0.15 ppm to 0.1 mol L- 1 Ni+2 ions with non-Nernstian slope of 22.0 mV/decade, had a rapid response time (less than 10 s), and can be used for three months without any considerable loss of potential. The sensor was useful within the pH range of 1.3 to 9.6, and was able to discriminate between Ni2+ and a large number of alkaline earth and transition metal ions. The practical utility of the sensor has been demonstrated by using it successfully as an indicator electrode in the potentiometric titration of Ni2+ with EDTA and oxalic acid.
Resumo:
The carcinogenic potential of carbendazim and its metabolites was analyzed using statistical treatment of electronic parameters obtained from DFT/ 6-311++G(d,p) and AM1 calculations. The carcinogen-DNA interaction is described in the framework of the theory of unsynchronized resonance of covalent bond as a process of electron transfer involving the HOMO and LUMO frontier orbitals. Through a Principal Component Analysis (PCA) of the electron affinity, carcinogen-DNA interaction energy, electrostatic attraction and cell membrane permeability (dipole moment m and partition coefficient LogP) evidence was obtained showing carbendazim displays carcinogenic activity. For the metabolites of carbendazim, no evidence was found in the literature of their carcinogenic activities. However, the electronic parameters for these metabolites exhibited similarity to known carcinogens, thereby showing the importance of the results obtained in this study for a policy based on the precautionary principle.
Resumo:
Rust, caused by Puccinia psidii, is one of the most important diseases affecting eucalyptus in Brazil. This pathogen causes disease in mini-clonal garden and in young plants in the field, especially in leaves and juvenile shoots. Favorable climate conditions for infection by this pathogen in eucalyptus include temperature between 18 and 25 ºC, together with at least 6-hour leaf wetness periods, for 5 to 7 consecutive days. Considering the interaction between the environment and the pathogen, this study aimed to evaluate the potential impact of global climate changes on the spatial distribution of areas of risk for the occurrence of eucalyptus rust in Brazil. Thus, monthly maps of the areas of risk for the occurrence of this disease were elaborated, considering the current climate conditions, based on a historic series between 1961 and 1990, and the future scenarios A2 and B2, predicted by IPCC. The climate conditions were classified into three categories, according to the potential risk for the disease occurrence, considering temperature (T) and air relative humidity (RH): i) high risk (18 < T < 25 ºC and RH > 90%); ii) medium risk (18 < T < 25 ºC and RH < 90%; T< 18 or T > 25 ºC and RH > 90%); and iii) low risk (T < 18 or T > 25 ºC and RH < 90%). Data about the future climate scenarios were supplied by GCM Change Fields. In this study, the simulation model Hadley Centers for Climate Prediction and Research (HadCm3) was adopted, using the software Idrisi 32. The obtained results led to the conclusion that there will be a reduction in the area favorable to eucalyptus rust occurrence, and such a reduction will be gradual for the decades of 2020, 2050 and 2080 but more marked in scenario A2 than in B2. However, it is important to point out that extensive areas will still be favorable to the disease development, especially in the coldest months of the year, i.e., June and July. Therefore, the zoning of areas and periods of higher occurrence risk, considering the global climate changes, becomes important knowledge for the elaboration of predicting models and an alert for the integrated management of this disease.
Resumo:
This work aimed to evaluate root colonization and interaction among isolates of rhizobacteria and eucalypt species. The method used to evaluate "in vitro" root colonization was able to indicate if the effect was benefic or deleterious allowing to pre-select isolates as potential growth promoter. There was interaction among isolates of rhizobacteria and Eucalyptus species for seed germinating and seedling growth. MF2 (Pseudomonas sp.) was the best rhizobacteria isolate for growth promotion of E. cloeziana e E. grandis. S1 (Bacillus subtilis) was the most effective for E. globulus, and Ca (Pseudomonas fulva), MF2 (Pseudomonas sp.), CIIb (Stenotrophomonas maltophilia) and S2 (B. subtilis) were the most promising isolates for the E. urophylla.