49 resultados para CHAINS
Resumo:
The aim of the present review is to give relevant information on aspects of the biology and ecology, including the vectorial competence of Lutzomyia sand fly species suggested as vectors of American cutaneous leishmaniasis in Brazil. The disease, due to Leishmania (Viannia) braziliensis, has been registered in most municipalities in all the Brazilian states and its transmission is associated with more than one sand fly species in each geographical region. A variety of Leishmania species can be found in the Amazon basin, where different epidemiological chains have been detected with the participation of different phlebotomine vectors. Finally, a discussion is presented on some sand fly species found naturally infected by Leishmania, but for which there is as yet no evidence regarding their epidemiological importance.
Resumo:
Trypanosoma cruzi sialoglycoproteins (Tc-mucins) are mucin-like molecules linked to a parasite membrane via a glycosylphosphatidylinositol anchor. We previously determined the structures of Tc-mucin O-glycan domains from several T. cruzi strains and observed significant differences among them. We now report the amino acid content and structure of Tc-mucin O-glycan chains from T. cruzi Colombiana, a strain resistant to common trypanocidal drugs. Amino acid analysis demonstrated the predominance of threonine residues (42%) and helped to identify the O-glycans as belonging to a Tc-mucin family that contain a ²-galactofuranose (²-Galf) residue attached to an α-N-acetylglucosamine (α-GlcNAc) O-4, with the most complex glycan, a pentasaccharide-GlcNAc-ol with a branched trigalactopyranose chain, on the GlcNAc O-6. The presence of ²-Galf on O-glycans from T. cruzi Colombiana mucins supports the use of glycosylation as a phylogenetic marker for the classification of Colombiana in the T. cruzi I group.
Resumo:
In this study we prepared an inclusion complex between an iodide analogue of metronidazole (MTZ-I) and cyclodextrin (CD) to develop a safer and more effective method of treating Trypanosoma cruzi infections. According to our results, MTZ-I and MTZ-I:β-CD were 10 times more active than MTZ, demonstrating that the presence of an iodine atom on the side chain increased the trypanocidal activity while maintaining its cytotoxicity. The selective index shows that MTZ-I was 10 times more active against T. cruzi than it was against mammalian cells. The modification of MTZ side chains provides a promising avenue for the development of new drugs.
Resumo:
The cuticular hydrocarbons of the Triatoma sordida subcomplex (Hemiptera: Reduviidae: Triatominae) were ana-lysed by gas chromatography and their structures identified by mass spectrometry. They comprised mostly n-alkanes and methyl-branched alkanes with one-four methyl substitutions. n-alkanes consisted of a homologous series from C21-C33 and represented 33-45% of the hydrocarbon fraction; n-C29 was the major component. Methyl-branched alkanes showed alkyl chains from C24-C43. High molecular weight dimethyl and trimethylalkanes (from C35-C39) represented most of the methyl-branched fraction. A few tetramethylalkanes were also detected, comprising mostly even-numbered chains. Several components such as odd-numbered 3-methylalkanes, dimethylalkanes and trimethylalkanes of C37 and C39 showed patterns of variation that allowed the differentiation of the species and populations studied. Triatoma guasayana and Triatoma patagonica showed the most distinct hydrocarbon patterns within the subcomplex. The T. sordida populations from Brazil and Argentina showed significantly different hydrocarbon profiles that posed concerns regarding the homogeneity of the species. Triatoma garciabesi had a more complex hydrocarbon pattern, but it shared some similarity with T. sordida. The quantitative and qualitative variations in the cuticular hydrocarbons may help to elucidate the relationships between species and populations of this insect group.
Resumo:
The basidiospores of Pisolithus sp. contain large amounts of lipids, indicating provision for future germination in the host rhizosphere. However, the accumulation, composition, and mobilization of lipids during formation and germination of these spores are largely unknown. In this study, lipid storage and fatty acid composition during basidiosporogenesis were analyzed in fresh basidiocarps using bright-field microscopy and gas chromatography. Abundant lipid bodies are found in the hyphae, basidia, and basidiospores of fungal basidiocarps. This evidences a considerable C transport in the basidiocarp to meet the C demand during basidiospore formation. Fatty acid composition analysis revealed the presence of 24 compounds with chains of 9 to 18 C atoms, either saturated or insaturated, with one or two insaturations. The fatty acid composition and content varied according to the developmental stage of the peridioles. In free basidiospores, the predominant compounds were 16:0, 16:1w5c, 18:1w9c, and 18:2w6,9c/18:0ante, at concentrations of 76, 46, 192, and 51 µg g-1 dry matter, respectively. Our results indicate that oleic acid is the major constituent of lipid reserves in Pisolithus sp. basidiospores. Further studies are being conducted to determine the factors that induce lipid mobilization during spore germination.
Resumo:
This study has shown that Eucalyptus tar and creosote can be used in phenolic adhesive formulations (resols) for wood products bonding. Some adhesives were prepared substituting 0; 17.7; 35.0 and 67.0% of the phenol by anhydrous tar and 0; 15.0 e 28.5% by creosote. In gluing Brazilian pine veneers, eucalypt tar and creosote based adhesives required longer pressing times for curing than conventional phenol-formaldehyde adhesives. By using 13C NMR, the number of carbons in side chains and hydroxyl, carbonyl, carboxyl and methoxyl groups related to 100 aromatic rings could be estimated in tar and creosote. In creosote, after reaction with excess formaldehyde in alkaline medium, only 0,28 hydroxymethyl groups was detected per phenolic ring. This low amount of hydroxymethylation explains the lack of reactivity in curing observed when creosote was introduced in a standard adhesive formulation.
Resumo:
This review discusses the methods used to prepare conductive polymers in confined environments. This spatial restriction causes formation of defect-free polymer chains in the interlayer as porous cavities of inorganic hosts. The properties of the different composites obtained are a synergist combination of the characteristics of the inorganic host and the polymer. This opens new perspectives for the preparation of these materials and widens its potential applications.
Resumo:
Perfluoro and sulfonated ion-exchange polymers are recognized as a very useful material for various mechanistic studies and applications in electrochemistry. These polymers are characterized by high equivalent weights and by a low number of ion-exchange sites interposed between long organic chains. The solubility enables a preparation of stable polyelectrolyte films on the electrode surface. Examples of the determination of trace metals and organic componds in real environmental samples are presented.
Resumo:
Eu3+ luminescence and EXAFS (Extended X-ray Absorption Fine Structure) results are presented for organic-inorganic hybrid gel hosts composed of a siliceous network to which small chains of oxyethylene units are covalently grafted by means of urea bridges. Coordination numbers for Eu3+ ions range from 12.8 to 9.7 with increasing Eu3+ concentration while the Eu3+-first neighbours mean distance is found to be constant at 2.48-2.49 Å in the same concentration range. Emission spectra display a broad band in the green/blue spectral region superposed to narrow lines appearing in the yellow/red region in such a way that for the eyes emission appears white. The broad band is assigned to intrinsic NH groups emission and also to electron-hole recombination in the nanosised siliceous domains. The narrow lines are assigned to intra-4f6, 5D0->7F0-4 Eu3+ transitions and from the energy position of the 7F0-4 levels a mean distance could be calculated for the Eu3+-first neighbours. The calculated results are in good agreement with the experimental ones obtained from EXAFS analysis.
Resumo:
DDT and others organochlorine insecticides are very persistent substances. Clinical symptoms of intoxication have been reported in humans, although the main problem concerning such substances is bioaccumulation and biomagnification along throphic chains, leading to contamination of top predators and humans after them. In this review these characteristics are described, as well as some aspects of the control of vector borne diseases, like leishmaniasis and malaria, which were until recently, controlled by the health authorities using DDT.
Resumo:
The literature carries many theories about the mechanism of action of local anesthetics (LA). We can highlight those focusing the direct effect of LA on the sodium channel protein and the ones that consider the interaction of anesthetic molecules with the lipid membrane phase. The interaction between local anesthetics and human erythrocyte membranes has been studied by ¹H and 31P nuclear magnetic resonance spectroscopy. It was found that lidocaine (LDC) and benzocaine (BZC) bind to the membranes, increase the mobility of the protons of the phospholipid's acyl chains, and decrease the mobility and/or change the structure of the polar head groups. The results indicate that lidocaine molecules are inserted across the polar and liquid interface of the membrane, establishing both electrostatic (charged form) and hydrophobic (neutral form) interactions. Benzocaine locates itself a little deeper in the bilayer, between the interfacial glycerol region and the hydrophobic core. These changes in mobility or conformation of membrane lipids could affect the Na+-channel protein insertion in the bilayer, stabilizing it in the inactivated state, thus causing anesthesia.
Resumo:
Irradiation of a,a-dimethylvalerophenone (1) adsorbed on microcrystalline cellulose employing methanol as the solvent shows a Norrish Type II/Type I ratio of 1.0±0.1. In solution, values of 2.3±0.3 in benzene and 8.7±2.0 in terc-butanol were obtained. The cyclization/elimination ratio for the Norrish Type II reaction of 1 shows values of 1.2±0.3 in cellulose, 17.9±2.7 in benzene and 3.2±03 in terc-butanol. When samples of 1/microcrystalline cellulose were prepared employing n-hexane, the Type II/Type I (29.5±2.9) and the cycl/elim (113.3±12.1) ratios were dramatically modified. These results demonstrate the difference in the behavior of 1 when entrapped in the cellulose chains or adsorbed on the cellulose surface.
Resumo:
Three compounds have been synthesized with formulae [3-MeRad][Ni(dmit)2] (1), [4-MeRad][Ni(dmit)2] (2) and [4-PrRad][Ni(dmit)2] (3) where [Ni(dmit)2]- is an anionic pi-radical (dmit = 1,3-dithiol-2-thione-4,5-dithiolate) and [3-MeRad]+ is 3-N-methylpyridinium alpha-nitronyl nitroxide, [4-MeRad]+ is 4-N-methylpyridinium alpha-nitronyl nitroxide and [4-PrRad]+ is 4-N-propylpyridinium alpha-nitronyl nitroxide. The temperature-dependent magnetic susceptibility of 1 revealed that an antiferromagnetic interaction operates between the 3-MeRad+ radical cations with exchange coupling constants of J1 = - 1.72 cm-1 and antiferromagnetism assigned to the spin ladder chains of the Ni(dmit)2 radical anions. Compound 1 exhibits semiconducting behavior and 3 presents capacitor behavior in the temperature range studied (4 - 300 K).
Resumo:
Thermosensitive hydrogels were synthesized using alginate-Ca2+ in association with a thermosensitive polymer, such as PNIPAAm. The mechanical properties of the hydrogels were determined measuring the maximum tension of deformation. With the increase of the temperature by 25 to 40 ºC above the LCST the chains of PNIPAAm collapsed, dragging the alginate net and diminishing the size of the pores. The decrease in the size of the pores of the hydrogel was followed by an increase in the mechanicals resistance of the material.
Resumo:
Various studies demonstrate that different frog species produce distinct classes of biologically active peptides. These peptides can act as alternative agents against pathogenic bacteria and fungi by membrane permeability. Although studies have recently demonstrated that this process is utterly related to the secondary structure adopted by the peptide (in this case, the a-helical structure) when in contact with the bacterial membrane, the detailed mechanism is still unknown. In this work we describe a conformational analysis of distinctin, a heterodimeric peptide isolated from the skin of Phyllomedusa distincta, an anuran found in the Brazilian Atlantic Forest. The study yielded a stable geometry with a high content of the a-helical structure both in chains 1 and 2 of distinctin, showing strong interaction between them.