34 resultados para Basaline impedance
Resumo:
This paper is focused on a review of the design features and the electrochemistry characterization of anode-supported planar SOFC. Studies and results of metallic alloy interconnectors and recovery for protection against corrosion and for contact layer are showed. Moreover a discussion of examples of measurements of impedance spectrometry, according to the literature and our experimental results are made. For the anode supported fuel cells the power density varies from 0.1 to 0.5 Wcm², according to results in the literature (showed in this paper). For electrolyte supported fuel cell the power density can be 10 Wcm-2 for high temperatures. An English-Portuguese glossary of most used terms in SOFC stack is given for greater clarity and to introduce new terms to the reader.
Resumo:
The use of carbon paste electrodes (CPE) of mineral sulfides can be useful for electrochemical studies to overcome problems by using massive ones. Using CPE-chalcopyrite some variables were electrochemically evaluated. These variables were: (i) the atmosphere of preparation (air or argon) of CPE and elapsed time till its use; (ii) scan rate for voltammetric measurements and (iii) chalcopyrite concentration in the CPE. Based on cyclic voltammetry, open-circuit potential and electrochemical impedance results the recommendations are: oxygen-free atmosphere to prepare and kept the CPE until around two ours, scan rates from 10 to 40 mV s-1, and chalcopyrite concentrations > 20%.
Resumo:
Conventional sample holder cells used to the electric characterization of ceramics at high temperature consists of an alumina tube and platinum wires and plates using a complex design. The high cost materials used in the conventional sampler holder cell were replaced by stainless steel and conventional ceramics. The sample holder was validated by characterizing yttria-stabilized-zirconia in a temperature range of 25 to 700 ºC. The results do not present variations, discontinuity or unusual noise in the electric signals. Several samples were characterized without maintenance, which demonstrates that the sample holder is electric and mechanic adequate to be used to electrical characterization of ceramics up to 700 ºC.
Resumo:
The corrosion resistance of the new Ti-6Al-4V-1Zr alloy in comparison with ternary Ti-6Al-4V alloy in Ringer-Brown solution and artificial Carter-Brugirard saliva of different pH values was studied. In Ringer-Brown solution, the new alloy presented an improvement of all electrochemical parameters due to the alloying with Zr; also, impedance spectra revealed better protective properties of its passive layer. In Carter-Brugirard artificial saliva, an increase of the passive film thickness was proved. Fluoride ions had a slight negative influence on the corrosion and ion release rates, without to affect the very good stability of the new Ti-6Al-4V-1Zr alloy.
Determinação do ponto de névoa em surfactantes não iônicos por espectroscopia de impedância elétrica
Resumo:
In this paper, we analyze the use of electrical impedance spectroscopy applied to determination of cloud point. The slope of admittance measured at 100 kHz is reduced to temperature above the critical value which characterizes the phase transition, in a strong indication that this process is activated during the clouding. Additionally to this study we explored the influence of parameters such as additives and temperature on the performance of phase separation of residues (silver nanoparticles) by cloud point extraction. The interaction with salt maximizes the separation of chemical residues in a progressively reduced temperature.
Resumo:
The development of organic devices based on conducting polymers for biofilm detection requires the combination of superior electrical response and high surface area for biofilm incorporation. Polypyrrole is a potential candidate for application in biofilm detection and control due to its characteristic superior electrical response and strong interaction with bacteria, which enables the use of the bioelectric effect in resulting devices. In this study, chemically synthesized polypyrrole was applied as a support for biofilm growth of S. aureus. Modifications in the electrical response of the polymeric template were explored to identify general mechanisms established during the deposition of the biofilm.
Resumo:
Ni–W–P electrodeposits were synthesized in a Hull cell in order to simulate the obtainment under industrial conditions. Complete coverage of panels was accomplished by applying total currents of 1.0 and 2.0 A. Panels obtained with a current of 1.0 A appeared brighter. The best compositional uniformities, as determined by Energy Dispersive Spectrometer (EDS) occurred in the current density ranges of 0.6 to 3.0 A dm−2 and 1.6 to 6.0 A dm−2 obtained with 1.0 and 2.0 A, respectively. However, the best morphological characteristics, as determined by Scanning Electro Microscope (SEM), were observed in those obtained with a total current of 1.0 A. Analysis of corrosion resistance by Electrochemical Impedance Spectroscopy (EIS) and Potentiodynamic Linear Polarization (PLP) in NaCl have shown significant variations in the amount of corrosion potential, polarization resistance, and even total impedance. The alloys exhibited amorphous character (XRD) and crystallized above 400 °C to Ni and Ni3P phases, and possibly Ni–W, with a subsequent increase in hardness. The results suggest that under industrial conditions, current density variations due to the large and complex geometric shapes of substrates lead to formation of distinct alloys. Furthermore, these materials are potential substitutes for chromium deposits in many applications.
Resumo:
Chemically modified electrodes have been studied to obtain new and better electrochemical sensors. Transparent conductive oxides, such as fluorine-doped tin-oxide (FTO), shows electrical conductivity comparable to metals and are potential candidates for new sensors. In this work, FTO was modified by gold electrodeposition from chlorine-auric acid solution using cyclic voltammetry (CV) technique. A set of different materials were produced, varying the scan number. Scanning electron microscopy and electrochemical impedance spectroscopy were performed for the characterization of electrodes surfaces. From this analysis was possible to observe the resistive, capacitive and difusional aspects from all kind of modified electrodes produced, establishing a relationship between this parameters and the scan number. The electrode with 100 scans of CV presented better characteristics for an electrochemical sensor; it has the lowest global impedance and rising of capacitive behavior (related to electrical double layer formation) at lower frequencies. This electrode was tested for paracetamol and caffeine detection. The results showed a high specificity, decreased oxidation potential (0.58 V and 0.97 Vvs. SCE, for paracetamol and caffeine, respectively) and low detection limits (0.82 and 0.052 µmol L-1).
Resumo:
Some aspects of the application of electrochemical impedance spectroscopy to studies of solid electrode / solution interface, in the absence of faradaic processes, are analysed. In order to perform this analysis, gold electrodes with (111) and (210) crystallographic orientations in an aqueous solution containing 10 mmol dm-3 KF, as supporting electrolyte, and a pyridine concentration varying from 0.01 to 4.6 mmol dm-3, were used. The experimental data was analysed by using EQUIVCRT software, which utilises non-linear least squares routines, attributing to the solid electrode / solution interface behaviour described by an equivalent circuit with a resistance in series with a constant phase element. The results of this fitting procedure were analysed by the dependence on the electrode potential on two parameters: the pre-exponential factor, Y0, and the exponent n f, related with the phase angle shift. By this analysis it was possible to observe that the pyridine adsorption is strongly affected by the crystallographic orientation of the electrode surface and that the extent of deviation from ideal capacitive behaviour is mainly of interfacial origin.
Resumo:
The penetration resistance (PR) is a soil attribute that allows identifies areas with restrictions due to compaction, which results in mechanical impedance for root growth and reduced crop yield. The aim of this study was to characterize the PR of an agricultural soil by geostatistical and multivariate analysis. Sampling was done randomly in 90 points up to 0.60 m depth. It was determined spatial distribution models of PR, and defined areas with mechanical impedance for roots growth. The PR showed a random distribution to 0.55 and 0.60 m depth. PR in other depths analyzed showed spatial dependence, with adjustments to exponential and spherical models. The cluster analysis that considered sampling points allowed establishing areas with compaction problem identified in the maps by kriging interpolation. The analysis with main components identified three soil layers, where the middle layer showed the highest values of PR.
Resumo:
Soil compaction caused by machinery traffic reduces crop yields. This study aimed to evaluate the effects of intensive traffic, and the soil water content, on the soil penetration resistance (PR) of a Rhodic Eutrudox (Distroferric Red Latosol, Brazilian Classification), managed under no-tillage (NT). The experiment consisted of six treatments: NT with recent chiseling, NT without additional compaction, and NT with additional compaction by 4, 8, 10 and 20 passes of a harvester with a weight of 100 kN (70 kN on the front axle). Undisturbed soil samples were collected at 5.5-10.5 cm and 13.5-18.5 cm depth to quantify the soil bulk density (BD). The PR was assessed in four periods, using an impact penetrometer, inserted in the soil to a depth of 46 cm. The effect of traffic intensities on the PR was small when this variable was assessed with the soil in the plastic consistency. Differences in PR among treatments increased as the soil water content decreased. The increase in the values of PR and BD was higher in the first passes, but the increase in the number of traffics resulted in deeper soil compaction. The machinery traffic effects on PR are better characterized in the friable soil consistency.
Resumo:
Brazilian surgeons deal routinely with esophageal motility disorders, because achalasia is highly prevalent in Brazil due to Chagas' disease. In the last years new technologies for the evaluation of esophageal motility became available. High resolution manometry and the combination of barometric parameters and intraluminal impedance are the new frontiers on this topic. The authors reviewed current, national and international, literature about achalasia with multichannel intraluminal impedance and high resolution manometry studies. The new technologies described are promising, however few studies have been published and further studies are still expected for achalasia patients.
Resumo:
This paper describes an electronic transducer for multiphase flow measurement. Its high sensitivity, good signal to noise ratio and accuracy are achieved through an electrical impedance sensor with a special guard technique. The transducer consists of a wide bandwidth and high slew rate differentiator where the lead inductance and stray capacitance effects are compensated. The sensor edge effect is eliminated by using a guard electrode based on the virtual ground potential of the operational amplifier. A theoretical modeling and a calibration method are also presented. The results obtained seem to confirm the validity of the proposed technique.
Resumo:
In routine studies of sensory nerve conduction, only fibers e7 µm in diameter are analyzed. The late components which originate from thinner fibers are not detected. This explains why a normal sensory action potential (SAP) may be recorded in patients with peripheral neuropathies and sensory loss. In the present study we investigated the late component of the median SAP with a near nerve needle electrode technique in 14 normal volunteers (7 men and 7 women), aged 34.5 ± 14.8 years. The stimulus consisted of rectangular pulses of 0.2-ms duration at a frequency of 1 Hz with an intensity at least 6 times greater than the threshold value for the main component. Five hundred to 2000 sweep averagings were performed. The duration of analysis was 40 or 50 ms and the wave analysis frequency was 200 (-6 dB/oct) to 3000 Hz (-12 dB/oct). We used an apparatus with a two-channel amplifier system, 200 MW or more of entry impedance and a noise level of 0.7 µVrms or less. The main component mean amplitude, conduction velocity and latency and the late component mean amplitude, conduction velocity and latency were respectively (mean ± SD): 26.5 ± 5.42 µV, 56.8 ± 5.42 m/s, 3.01 ± 0.31 ms, 0.12 ± 0.04 µV, 16.4 ± 2.95 m/s and 10.6 ± 2.48 ms. More sophisticated equipment has an internal noise of 0.6 µVrms. These data demonstrate that the technique can now be employed to study thin fiber neuropathies, like in leprosy, using commercial electromyographs, even in non-academic practices
Resumo:
Recent technological developments have created new devices that could improve and simplify the construction of stimulus isolators. HEXFET transistors can switch large currents and hundreds of volts in nanoseconds. The newer opto-isolators can give a pulse rise time of a few nanoseconds, with output compatible with MOSFET devices, in which delays are reduced to nanoseconds. Integrated DC/DC converters are now available. Using these new resources we developed a new electrical stimulus isolator circuit with selectable constant-current and constant-voltage modes, which are precise and easy to construct. The circuit works like a regulated power supply in both modes with output switched to zero or to free mode through an opto-isolator device. The isolator analyses showed good practical performance. The output to ground resistance was 1011 ohms and capacitance 35 picofarads. The rise time and fall time were identical (5 µs) and constant. The selectable voltage or current output mode made it very convenient to use. The current mode, with higher output resistance values in low current ranges, permits intracellular stimulation even with tip resistances close to 100 megaohms. The high compliance of 200 V guarantees the value of the current stimulus. The very low output resistance in the voltage mode made the device highly suitable for extracellular stimulation with low impedance electrodes. Most importantly, these characteristics were achieved with a circuit that was easy to build and modify and assembled with components available in Brazil.